
www.manaraa.com

Applications of Out-of-Domain Knowledge
in Students’ Reasoning about Computer Program State

By

Colleen Marie Lewis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Science and Mathematics Education

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Andrea A. diSessa, Chair
Michael Clancy
Kathleen Metz

Fall 2012

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3555787

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3555787

www.manaraa.com

www.manaraa.com

1

Abstract

Applications of Out-of-Domain Knowledge
in Students’ Reasoning about Computer Program State

by

Colleen Marie Lewis

Doctor of Philosophy in Science and Mathematics Education

University of California, Berkeley

Professor Andrea A. diSessa, Chair

To meet a growing demand and a projected deficit in the supply of computer professionals
(NCWIT, 2009), it is of vital importance to expand students' access to computer science.
However, many researchers in the computer science education community unproductively
assume that some students lack an innate ability for computer science and therefore cannot be
successful learning to program. In contrast, I hypothesize that the degree to which computer
science students make productive use of their out-of-domain knowledge can better explain the
range of success of novices learning to program. To investigate what non-programming
knowledge supports students’ success, I conducted and videotaped approximately 40 hours of
clinical interviews with 30 undergraduate students enrolled in introductory programming
courses. During each interview, a participant talked as they solved programming problems,
many of which were multiple-choice problems that were highly correlated with success on an
Advanced Placement Computer Science exam. In the analysis of the interviews I focused on
students’ strengths rather than the typical decision to focus on students’ weaknesses. I
documented specific competencies of the participants and applied analytic tools from the
Knowledge in Pieces theoretical framework (diSessa, 1993) to attempt to understand the
source and nature of these competencies. I found that participants appeared to build upon
several kinds of out-of-domain knowledge. For example, many students used algebraic
substitution techniques when tracing the state of recursive functions. Students appeared to use
metaphors and their intuitive knowledge of both iteration and physics to understand infinite
loops and base cases. On the level of an individual students’ reasoning, a case study analysis
illustrated the ways in which a participant integrated her linguistic knowledge of “and” into her
reasoning about the computer science command “and.” In addition to identifying these specific
applications of out-of-domain knowledge, this dissertation applies learning theories that had
not previously been applied to computer science education. Through this application I extend
the learning theories to the domain of computer science, propose refinements to the theories,
and provide insights into participants’ reasoning about particular computer science topics.

www.manaraa.com

2

www.manaraa.com

 i

Acknowledgements

I would like to thank my advisor Andy diSessa whose patience and encouragement has
helped me develop my ideas and passion for education research. I came to graduate school
wanting to be the best possible computer science educator and Andy has inspired me to aim
much higher, to change how people conceptualize computer science learning. He taught me by
example to give my research participants the type of respect and thoughtful consideration of
their ideas that he gives his advisees and research participants alike. He taught me the
importance of every word I use to express my ideas and my writing and thinking are changed
for the better.

I would like to thank my advisor Mike Clancy for his endless encouragement. We share a
passion for understanding our students and connecting them with experiences that will develop
their knowledge and interest in computer science. He matched my enthusiasm for my research
questions of the week, was my tour guide of computer science education research, and was a
continual source of support and encouragement. Mike expected me to accomplish things that I
thought graduate students could not do and I credit his high expectations as the catalyst for my
professional accomplishments.

I would like to thank Kathleen Metz for providing the foundation for my engagement in
qualitative research. She continually challenged me to align my research goals, analytic method,
and the concerns of the educational research community. She pushed my thinking forward by
challenging my assumptions and suggesting techniques to improve the validity of my findings.

I would like to thank all of my family and friends who have provided endless support,
both emotional and intellectual. In particular I would like to thank Paul Bruno, Katherine Lewis,
Cynthia Sturton, Nathaniel Titterton, and Dan Garcia who have tirelessly encouraged, critiqued,
and supported me.

The goal of my research, teaching, and volunteer work is to make computer science
accessible. I greatly appreciate the people in my life who worked to make computer science
accessible to me. In addition to the many excellent instructors who educated and inspired me,
including Dan Garcia, Katherine Yelick, and Eric Brewer, I would like to thank Irene Jung for
seeing my passion for computer science and reminding me of it anytime I felt discouraged.

www.manaraa.com

 ii

Table of Contents
INTRODUCTION ...1

Obstacles and Opportunities ...1

Dissertation Overview ...6

THEORETICAL FRAMEWORK ..8

Theory Development ...8

Epistemological Commitments ..9

Coordination Class Theory and Theoretical Constructs ..11

Conclusion...16

METHODS ...17

Participant Recruitment ..17

Participants ...17

Data Collection ..18

Sample Size ...18

Interview Protocol ...19

Analysis Methods ..20

Recursion Background ...21

Interview Questions ..22

THE COORDINATION CLASS OF STATE ...34

Methods..39

Case Study: Megan ..42

Discussion ...55

PARTIAL DESCRIPTIONS OF STATE CHANGE ...59

Case Study ...61

Previous Research ...64

Types of Partial Descriptions of State Change ..66

Analysis ...67

Conclusions ...72

INTUITIVE KNOWLEDGE ABOUT BASE CASES AND INFINITE LOOPS ...74

Motivation: No Evidence of the use of a Memorized Response ...77

Previous Research ...79

Hypotheses Regarding Infinite Loop Knowledge ..81

www.manaraa.com

 iii

Hypotheses Regarding Base Case Knowledge ..83

Conclusion...85

SUBSTITUTION TECHNIQUES ...87

Methods..90

Substitution Technique: Simulating Execution ...91

Substitution Technique: Accumulating Pending Calculations ...93

Substitution Technique: Memoization ...95

Substitution Technique: Solving it by hand ..96

Discussion ...99

CONCLUSION .. 103

The coordination class of state .. 104

Partial Descriptions of State Change .. 104

Intuitive knowledge about base cases and infinite loops ... 105

Substitution techniques... 106

Summary of Contributions .. 106

REFERENCES .. 107

www.manaraa.com

 Introduction

 1

INTRODUCTION
It is common for a college course to be a student's introduction to programming. Many

students come with enthusiasm, motivation and a track record of academic success. However,
despite the best efforts of the student and the instructor, many students appear to never “get
it” (McCracken et al., 2001).

It is an open question what non-programming experiences may support success learning
to program (Simon et al., 2006). In this dissertation I investigate the question of what
experiences students bring to the computer science classroom, how they can contribute to
success, and how computer science pedagogy can take advantage of them. There is strong
support for the assumption that without understanding the interplay between non-
programming knowledge and the learning of programming, pre-programming and
programming instruction at best will be impoverished and at worst will fail (Soloway, Bonar, &
Ehrlich, 1983; Fleury, 1993; Ben-Ari, 2001; diSessa, 1986; Vosniadou & Brewer, 1992; diSessa,
1993; diSessa & Wagner, 2005).

In this project I investigate the constructivist assumption that prior knowledge can serve
as a significant support for learning computer programming. I hypothesize that the degree to
which computer science students make productive use of their out-of-domain knowledge can
explain the range of success of novices learning to program. A common (Robins, 2010)
alternative assumption within the computer science community is that innate aptitude for
computer programming explains the range of students’ success: people are born as
programmers or non-programmers (Dehnadi, 2006; Lister et al., 2004; Reges, 2008; Simon et
al., 2006). According to the work of Dweck (2007) and Steele (1997), when this assumption
underlies pedagogy, student learning and attitudes suffer.

To investigate what non-programming resources and non-programming strategies
support students’ success, I conducted a detailed analysis of student reasoning on computer
programming questions that were identified by previous research (Reges, 2006) and will be
discussed at greater length in this chapter and the methods chapter.

The goal of this line of work is to transform computer science education through
identifying and building upon students’ strengths to ultimately support the success of more
students. This is of vital importance to increase access to computer science and to meet a
growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009).

Obstacles and Opportunities

Obstacles
I hypothesize that there are two related obstacles to the success of introductory

programming courses. The first is the belief of many computer science students that computer
science is unrelated to their previous experience and ways of thinking. The second is the belief
of many computer science instructors and many computer science education researchers that

www.manaraa.com

 Introduction

 2

success in computer science is determined by innate ability. Both are counterproductive for
student learning as is elaborated below (Dweck, 2007; Steele, 1997).

Student Beliefs
In a related project (Lewis, Yasuhara, & Anderson, 2011), we found that students

frequently describe computer science as unconnected to their previous ways of thinking. For
example, one student said, “It’s like a different way of thinking. Like it’s really confusing. You
have to get used to it.” Another similar sentiment, “I feel like you shouldn’t do it unless you
like—unless you’re like more attuned to that kind of thinking. If you don’t think that way, it’s
just going to be really difficult for you.” Students appear to believe that their existing ways of
thinking are not relevant to learning to program and that to be successful in computer science
they have to adopt a completely new way of thinking. This model of adopting a new way of
thinking rather than adapting your current thinking may be a significant barrier to students
making productive use of prior knowledge.

Educational research from a wide variety of fields argues that students’ prior knowledge
must be taken into account (Ben-Ari, 2004; diSessa, 1993; Fleury, 1993; Soloway, Bonar, &
Erlich, 1983; Vosniadou & Brewer, 1992). Pennington (1987) found that the most successful
programmers were those who frequently made connections between the program text and the
non-programming or real-world goals. Based upon this finding, I hypothesize that students will
be less successful if they fail to connect their programming knowledge to their prior non-
programming knowledge.

Instructor and Researcher Beliefs
The hypothesis that students have untapped resources upon which we can transform

undergraduate computer science education runs counter to what may be a common
assumption among computer scientists of the existence of an innate aptitude that determines
students’ success learning to program (Robins, 2010; Lewis, 2007). While it is possible that
students could have a genetic predisposition to program computers, this is currently an
untested assumption, which can have real consequences and can play into self-fulfilling
prophecies (Dweck & Legget, 1988; Steele, 1997). Even if we assume that many students lack
the intellectual resources to become as successful as Alan Turing, we hope to connect all
motivated students with an environment in which they can become competent at
programming. In contrast, Simon et al. (2006) summarize an ongoing research direction that we
believe may be an outgrowth of a dearth of explanations of why some students are less
successful.

“The literature abounds in assertions of the existence of an aptitude for programming,
and of attempts to find a suitable predictor for that aptitude so as to avoid wasting time
and effort educating students who are unlikely ever to become good programmers.”
(Simon et al. 2006)

The assumption of an innate aptitude is often implicit and is made explicit in more subtle ways.
For example Lister et al. (2004) describe why differences in innate talent at various institutions
constitute a complication in analyzing the study’s multi-institutional data.

www.manaraa.com

 Introduction

 3

“Clearly, some institutions attract students with a greater innate talent for
programming.” (Lister et al., 2004)

In multi-institutional studies it is arguably relevant to discuss differences in the student
populations. However in this statement the authors indicate an otherwise unstated assumption
that there exists an “innate talent for programming”. Barker et al. (Barker, McDowell & Kalahar,
2009) demonstrates a more subtle instantiation of this assumption of innate aptitude in
appealing to the idea of “weeding out” students.

“Introductory classes should weed students out based on ability and potential, not on
the weight of the workload” (Barker, McDowell & Kalahar, 2009).

In this and her other work (Garvin-Doxas & Barker, 2004), Barker attempts to direct
computer science educators to practices that will support an inclusive and non-defensive
climate within the computer science classroom. The juxtaposition of the goals of Barker’s
research and the seeming acceptance and endorsement of “weed[ing] students out” suggests
the prevalence of the belief in an innate aptitude for programming.

In another example, Dehnadi (2006) bemoans the fact that students are not afforded
the opportunity before college to be “streamed” into those that “can” and “can’t” be
successful.

“Part of the problem is that the subject is not widely taught at school, so
undergraduates arrive without having being streamed into those who can do well and
those who can't.” (Dehnadi, 2006 p. 53)

An important aspect of the language here is Dehnadi’s use of the words “can” and
“can’t.” As a practical point we have computer science students that “are” and “are not”
successful. However this subtle difference between “are not” and “cannot” appears to
represents a core assumption of innate aptitude.

Clayton Lewis (2007) investigated the prevalence of various beliefs amongst computer
science professors and students. He found that 10 out of 13 professors surveyed rejected the
statement “Nearly everyone is capable of succeeding in the computer science curriculum if they
work at it.”

 In my related research, I have documented students’ beliefs about whether or not
computer science ability is innate and how the environment of an introductory programming
class shapes these beliefs (Lewis, Yasuhara, Anderson, 2011). There was variation between
participants’ beliefs; some participants rejected and some students endorsed the existence of
an innate ability for computer science. There were cases in which participants endorsed the
existence of an innate ability that demonstrated how this belief can discourage persistence and
exclude students that are underrepresented within computer science. The student quoted
below attributed the idea that computer science ability is innate to her introductory computer
science professor. I interpret her statements as suggesting that students’ difficulty in computer
science can be attributed to an unchangeable lack of innate ability. She said:

www.manaraa.com

 Introduction

 4

“Even my [UA-CS2 professor] told us that some people are just born that way, with that
mental outlook that is compatible with CS… They feel it’s so easy for them... Yeah, and
he told the rest of the people that some of you will try but some of you won’t get it, and
it’s just that your mental outlook isn’t made that way. It’s something you’re born with.
You can’t help it” (p. 6, Lewis, Yasuhara, & Anderson, 2011)

 Another Participant in this study said that she thought female students might be less
innately abled at computer science and said that few women in the field might be evidence of
this lack of an innate ability (Lewis, Yasuhara, & Anderson, 2011).

Based upon research from Dweck and her colleagues (see Dweck & Leggett, 1988 for a
review) and Steele and his colleagues (Steele, 1997; Carr & Steele, 2009) there are negative
consequences for students when their success or lack of success is framed as indicative of
innate aptitude.

Carol Dweck and colleagues (e.g., Dweck & Leggett, 1988) have researched how
students behave when reasoning with a fixed or growth mindset. A fixed mindset views
intelligence as static while a growth mindset views intelligence as malleable. For example,
when students read a passage where intelligence was defined as innate, the students were less
likely to choose challenging tasks than students who were presented with a text that defines
intelligence as malleable (Dweck & Leggett, 1988). If students come to believe that there exists
an innate aptitude for computer science they may adopt a fixed mindset, which can stifle their
academic growth (Dweck & Leggett, 1988; Simon et al., 2008).

Claude Steele and his colleagues (Steele, 1997; Carr & Steele, 2009) have identified a
related phenomenon named stereotype threat. Consider the stereotype of women being bad at
math. Spencer, Quinn and Steele (1999) gave two groups of men and women a math test. The
first group was told that the test was diagnostic of ability and that women tended to perform
poorly on the test. The second group was told that the test was not diagnostic of ability and
that men and women tended to perform equally well. In this and other studies (e.g. Steele &
Aronson, 1995), the stereotyped group performed less well than their non-stereotyped peers
only in the group that was told that the test was diagnostic of ability.

Steele (1997) explains that when members of a stereotyped group come to believe that
a stereotype could be used to interpret their performance, their behavior tends to reinforce the
stereotype. It is not necessary that an individual believes the stereotype to be true, only that
the stereotype is activated and reflects upon a domain with which he or she is identified
(Steele, 1997). This phenomenon has held for stereotypes of the intellect of black students
(Steele & Aronson, 1995), stereotypes of the intellectual inferiority of white males to Asian
males (Aronson et al., 1999) and stereotypes of white people as racist (Goff, Steele, & Davies,
2008). Therefore if students who are invested in their success in computer science believe that
stereotypes of their abilities in computer science are relevant, their performance may be
artificially depressed.

www.manaraa.com

 Introduction

 5

Opportunities
The research in this dissertation sits at a crossroad of opportunity. Below I discuss how

the proposed research takes advantage of the frequently late introduction of computer science,
builds upon successful research and pedagogy efforts in physics education, and capitalizes on
previous research that has identified central multiple-choice computer science problems
(Reges, 2008) in the highly interconnected domain of computer science (Robins, 2010).

Late Introduction to Computer Science
 Few students have the opportunity to learn computer science before attending college.
Unlike other intellectual domains, such as mathematics or history, many students’ first
introduction to computer science is in college. Certainly some students have access before
college, but the inequality of access then creates a heterogeneous population of students with
prior experience at the college level. For example, in 2010, only 19.2 percent of the Advanced
Placement Computer Science (AP CS) test takers were female (The College Board, 2011). In
2010, this was the lowest ratio of female-to-male test-taking rates of any of the offered
Advanced Placement tests. AP CS courses are not the only computer science courses offered at
the pre-college level, but the data regarding test-taking patterns for the AP CS exam suggest
that female students will be overrepresented in the population of students that do not have
programming experience before college, which has been observed at the University of
California, Berkeley (Lewis, Titterton, & Clancy, 2012).

 As documented by Margolis and others (Margolis et al., 2008) few students have
experience learning computer science before college. However, with this missed opportunity of
early learning comes a unique opportunity for educational research. As an educator and an
educational researcher I often work with students who are first learning computer science in
college and therefore I have the opportunity to observe students engaged in learning within a
domain for which they are both ignorant and potentially well prepared by their other academic
experiences. However, some students with what we believe to be adequate preparation and
motivation are not successful. We do not know what academic experiences would enable
someone to be well prepared for the learning of computer science.

Evidence of Success in Other Domains
The proposed research follows a long line of research investigating prior knowledge

from other domains (diSessa, 1993; diSessa & Sherin, 1998; Wittman, 2001; diSessa & Wagner,
2005; Wagner, 2006; Parnafes, 2007; Levrini & diSessa 2008; Hammer, 2000; Russ & Sherin,
2008) and developing transformative pedagogy (diSessa & Minstrell, 1998). This prior work
provides methodological examples of how to identify students’ knowledge resources and
beliefs that play a role in learning. More generally these researchers engage in the enterprise of
studying conceptual change and attempt to understand the dynamic process of thinking and
learning in the domain of physics. The current study builds upon this work to consider
conceptual change within computer science education.

www.manaraa.com

 Introduction

 6

Questions Central to Computer Science Competence
Robins (2010) presents a similar critique of the computer science community’s

assumptions of the existence of an innate aptitude for programming. He claims that this
assumption is fueled by instructors’ experience of a bimodal distribution of student grades in
introductory programming courses. While Dehnadi (2006) claims that this bimodal result is
because the course separates “those who can do well and those who can't” (Dehnadi, 2006 p.
53), Robins (2010) claims that it is the highly connected nature of the domain of computer
science that produces the bimodal distribution. Robins (2010) builds a constructivist model of
learning, such that a student’s failure to grasp a concept early in the course negatively
influences his or her chance of understanding later concepts. Building this alternate assumption
into a computational model, Robins (2010) was able to simulate the bimodal grade distribution
patterns observed by instructors. From Robins’ (2010) work, I take the hypothesis that
computer science may be a highly interconnected domain. From this hypothesis, I attempt to
identify questions that capture central connections in the domain and turn to the work of Reges
(2008) to identify some such questions.

Reges (2008) analyzed results from the 1988 AP CS exam. He found that five multiple
choice questions accounted for the majority of the pair-wise correlations between multiple
choice and free-response questions on the exam. Reges (2008) frames the question exposed by
his research in the following quote.

“do [the highly correlated questions] measure a fundamental ability that some people
have more than others? If so, can that ability be effectively tested before a student
takes a course?”

Using clinical interviews I captured novice programmers’ answers to these highly-
correlated questions from the 1988 AP CS exam. However, this dissertation does not seek to
answer the question of whether “a fundamental ability that some people have more than
others” can be “tested before a student takes a course.” Instead I see to answer the question of
whether as educators we can help students develop that ability. Instead of investigating a
static “fundamental ability” I investigate whether these questions may measure teachable
competencies that may be identified and explored by analyzing how students reason about
these questions.

Dissertation Overview
In response to the lack of factors that can predict success learning to program, I

hypothesize that students’ success is shaped not simply by having a particular non-
programming competence, such as a skill or set of skills from math, but the degree to which
students make productive use of their non-programming competence when learning to
program. The goal of this dissertation is to investigate the hypothesis that students have out-of-
domain knowledge that is relevant to the learning and doing of computer programming and to
develop hypotheses about the content and function of that out-of-domain knowledge.

 An emphasis throughout the dissertation is novice programmers’ understanding of
computer program state because it is a language independent description of some of the key

www.manaraa.com

 Introduction

 7

competencies of programming. Computer program state is the set of all information calculated
and maintained by the machine when executing a program. This includes user-defined
variables, arguments to functions, return values from expression and sub-expressions, and
stack information such as the program counter and nesting of function class. Numerous
researchers have emphasized the importance of program state (du Boulay, O'Shea, & Monk,
1989; du Boulay, 1989; Shinners-Kennedy, 2008; Papert 1980; diSessa, 2000; Cooper, Dann, &
Pausch, 2000).

The analysis chapters each provide an additional perspective on novice programmers’
reasoning about computer program state. These analyses were inspired by observations of
competence amongst the research participants. Upon documenting these competencies, I
evaluated various analytic tools for exploring the nature and source of the competence.

 This data collection and much of the analysis is informed by the Knowledge in Pieces
theoretical framework. The following Theoretical Framework chapter provides an overview of
relevant details from the Knowledge in Pieces theoretical framework. This includes two models
of knowledge that I apply within my analysis and based upon analysis I extend and refine. The
first theory is a model of a particular type of conceptual knowledge referred to as coordination
class theory (diSessa & Sherin, 1998) and the second theory is a model of a type of intuitive
knowledge referred to as p-prim theory (diSessa, 1993).

www.manaraa.com

 Theoretical Framework

 8

THEORETICAL FRAMEWORK
 This chapter provides details regarding the Knowledge in Pieces theoretical framework,
which has shaped the data collection and analysis in this study. I begin with background
regarding the enterprise of theory development particular to the Knowledge in Pieces
theoretical framework. Next I present details of Knowledge in Pieces including the foundational
epistemological commitments and a theoretical model of a particular type of concept, referred
to as a coordination class. All of the analysis in this dissertation is built upon these
epistemological commitments and the first analysis chapter applies coordination class theory to
computer science for the first time. This section is intended to provide relevant background
regarding Knowledge in Pieces, coordination class theory, and the style of research and theory
development undertaken in this dissertation.

Theory Development
While someone might colloquially say that an individual has a concept, this everyday

notion of a “concept” specifies very little about the individual’s knowledge. Researchers
contributing to the Knowledge in Pieces theoretical framework develop models of learning and
knowing that go beyond typical dictionary definitions. To introduce the content of these models
I separate the features of knowledge that are described as either about the observable
behavior, content and form, or dynamics of a person’s knowledge. This is not a traditional
segmentation of the research, but attempts to highlight the scope and focus of Knowledge in
Pieces research.

I define the observable behavior of knowledge as the observable aspects of an
individual’s knowledge. This includes coarse measures such as whether or not an individual
answers a question correctly. This also includes subtle features in the content of an individual’s
explanation or answer to a question, such as the details of their solution path. The behavior of
an individual’s knowledge is a typical focus of educational research. This is an important aspect
of knowledge to emphasize, but this study and others within the Knowledge in Pieces line of
work shift the focus to the content, form, and dynamics of an individual’s knowledge.

Work from within the Knowledge in Pieces line of work emphasizes these two other
aspects of knowledge: the content and form of knowledge and the dynamics of knowledge.
Specifying the content and form of knowledge is primarily a theoretical task in which the
researchers attempt to build a model of the types and properties of an individual’s knowledge.
Developing a model of the content and form of knowledge goes hand in hand with developing a
model of the dynamics of knowledge. I define the content and form of knowledge as the
content of specific knowledge and hypothesized forms of this knowledge while the dynamics of
knowledge specifies how various knowledge resources interact to produce the observable
behavior of knowledge.

Specificity in the definitions of these terms and predictions of the model is necessary to
provide for the possibility of rejecting or identifying necessary changes in the theory presented.
To discuss and develop theories that specify the content, form, and dynamics of knowledge it is

www.manaraa.com

 Theoretical Framework

 9

not sufficient to use everyday labels of knowledge such as “concept” or “understanding.” These
everyday labels of knowledge are too coarse to describe the content, form, and dynamics of
knowledge that could produce the diversity of behavior observed. A major emphasis in
coordination class theory is to move beyond typical definitions of terms for describing learning.
In particular, coordination class theory is specific about what it means to have a particular
concept.

The current study, and much of the work that has adopted the Knowledge in Pieces
theoretical framework, attempts to develop theories of learning. The Knowledge in Pieces
theoretical framework is comprised of a number of overlapping theories of learning. These
theories are informed by observing individuals’ reasoning about various situations. From these
data, models regarding the content, form, and dynamics of knowledge are developed to match
the observed data. These models are the primary component of the theories of learning and
are taken as works in progress that are continually refined (Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003). For example, a model of a particular type of concept, referred to as a
coordination class, has been continually expanded and refined by subsequent studies (diSessa
& Sherin, 1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Parnafes, 2007; Levrini
& diSessa 2008) These continually refined models, which are often referred to as theories, are
different from the commonly referenced theories in physics. In physics, theories are typically
static and infrequently questioned. The theories in the Knowledge in Pieces line of research can
be seen as earlier in the process of theory development. In this line of work, theories are
intended to be developed, scrutinized, extended, and refined. This iterative process of
development both changes and improves these theories (Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003).

Epistemological Commitments
While the theories that comprise the Knowledge in Pieces theoretical framework are

actively refined, there exist some conclusions regarding the content, form, and dynamics of
knowledge that are shared by researchers who apply this theoretical framework. I preface my
introduction of coordination class theory by identifying some of these common epistemological
commitments in research using the Knowledge in Pieces theoretical framework.

I will refer to the components of an individual’s knowledge as knowledge resources.
While the language varies between researchers (diSessa, 1993; Hammer, Elby, Scherr, & Redish,
2004), these knowledge resources are not assumed to be encoded in a uniform way (diSessa,
1993). As an illustration of the diversity of encodings, I will describe two possible encodings of
knowledge that govern the opening of jars. As a first example, I can easily recall and interpret
the phrase “righty-tighty, lefty-loosey.” Individuals may have factual knowledge like this
encoded as a particular phrase. This can be seen as a different type of knowledge than the
knowledge I use when I, without recalling the phrase, reach to untwist a jar lid. We can think of
these two knowledge resources as being of a similar grain size because they both govern the
opening of jars, but they are almost certainly encoded in different ways. It is likely that the first
is primarily encoded as a phrase while the second is primarily encoded as what would
colloquially be referred to as muscle memory.

www.manaraa.com

 Theoretical Framework

 10

 In addition to assuming a diversity of encodings of knowledge resources, the Knowledge
in Pieces theoretical framework specifies that various knowledge resources can work together
to produce more complex competence (diSessa, 1993). This implies that reasoning patterns
that can be observed in behavior are sometimes supported by not just a single knowledge
resource, but a network of knowledge resources. “Knowledge in Pieces” refers to this network
of knowledge resources that are assumed to support everyday and scientific reasoning. For
example, compare the knowledge resources to open a jar with the knowledge resources
involved in a more complex task such as replacing the brakes on a bicycle. We can see this more
complex task as requiring more knowledge than is necessary to open a jar. Replacing the brakes
on a bicycle may even require some subset of the knowledge needed to open a jar. While we
could model this as a single knowledge resource with larger scope, it might better be described
as, itself, a collection of knowledge resources.

For a non-expert, the application of these knowledge resources is frequently described
as an emergent process and that the dynamics of knowledge and the details of the situation
influence the particular application of knowledge. This can result in the observable fact that the
knowledge an individual applies in a context may vary and can explain a lack of coherence that
has been observed in various studies of novice knowledge (Kahney, 1989; Vosniadou & Brewer,
1992). For example, Kahney (1989) found that some students were inconsistent in their
predictions of the behavior of recursive function calls. While many researchers presume that
students have definite models of particular concepts (see diSessa, 2006), this does not explain
some of the behavior of students’ knowledge such as answering correctly on one question
while seeming unable to produce the same performance on another question. This can be
explained by the presence of a diversity of knowledge resources, which are not uniformly
applied to produce expert performance.

In the Knowledge in Pieces theoretical framework (diSessa, 1993), whether or not a
piece of knowledge is accessed by an individual in a context is referred to as whether or not
that piece of knowledge is cued or activated. This construct of cueing was introduced to
describe the relative priority of a type of intuitive knowledge within an individual’s knowledge
system (diSessa, 1993), but has not been used in coordination class theory research. A
description of this type of intuitive knowledge will be provided later in this chapter. I reference
it here only to note that I will apply this language of cued and activated to discuss a greater
diversity of knowledge resources because it is consistent with the epistemological
commitments of coordination class theory.

Each knowledge piece can be thought to have a particular priority of cueing for each
context, referred to as its cueing priority. Knowledge can be cued by elements in the external
environment or be part of a network of closely connected knowledge elements that are cued
together. Cueing priority might be viewed as a measure of an individual’s unconscious
assumption regarding the applicability of that knowledge in a context. This explains some
examples of failure of transfer, where an individual has demonstrated use of some knowledge
that they appear to not apply in a new context (diSessa & Wagner, 2006). Knowledge that is
cued is available to the individual, but the individual may decide that the knowledge is not

www.manaraa.com

 Theoretical Framework

 11

relevant to a particular context. This phenomenon is analyzed in previous research (diSessa &
Sherin, 1998; Wagner, 2006) and my first analysis chapter.

 A specific instantiation of this idea of diversity of encodings and network of knowledge
can be found in diSessa’s model of intuitive knowledge (1993). This exemplifies a final
epistemological commitment that individuals’ everyday knowledge interacts with academic
knowledge in individuals’ reasoning. diSessa (1993) identified a class of knowledge resources
that he referred to as phenomenological primitives, or p-prims. P-prims are hypothesized to be
a primitive knowledge resource in an individual’s knowledge system, meaning that p-prims are
not composed of more primitive knowledge resources. P-prims are phenomenological, meaning
that they relate to physical phenomena in the world. P-prims are presumed to be responsible
for some of individuals’ expectations regarding physical phenomena. For example, diSessa
(1993) identified and labeled Ohm’s p-prim as the knowledge resource responsible for the
intuition that you have to work harder to push a heavy shopping cart than to push a light
shopping cart. diSessa (1993) schematized this intuition from Ohm’s p-prim as that “[a]n agent
or causal impetus acts through a resistance or interference to produce a result” (p. 217,
diSessa, 1993). This intuition relates to Ohm’s law: instead of relating voltage, current, and
resistance, Ohm’s p-prim relates effort, result, and resistance.

In summary, the Knowledge in Pieces theoretical framework assumes that students
have a diverse set of knowledge resources available to them, which includes knowledge from
in- and out-of-school settings. These knowledge resources interact to produce individuals’
observed behavior and these knowledge resources are assumed to be varied in encoding.
Depending upon details of the situation an individual may invoke different resources.

Coordination Class Theory and Theoretical Constructs

The Function of Coordination Classes
In everyday use there is a diversity of things that count as concepts. For example, we

could label “surface area,” “chair,” and “love” all as “concepts.” These are each different ideas
with different ways of knowing. Certainly the way in which individuals could demonstrate that
they have the concept of “surface area,” “chair,” and “love” differs between these three
concepts. For example, an expert with the concept of surface area might be able to identify the
surface area of various objects while an expert with the concept of chair may be able to identify
whether various items are in fact chairs. As a rough approximation, expertise with surface area
involves measurement and calculation while expertise with chairs involves classification.
Measurement and calculation are dissimilar in many ways to classification. I will not speculate
how an expert with the concept of love might demonstrate that expertise, but it is likely
different than the competence associated with “surface area” or “chair.” This motivates why
moving beyond colloquial terms for learning such as “concept” may provide clearer and more
coherent constructs for theories of learning.

Given the difference in how these competencies are demonstrated, it may be inaccurate
to assume that the development of these concepts is uniform or that the dynamics of use of
these concepts is uniform. diSessa and Sherin (1998) specified that a coordination class is a

www.manaraa.com

 Theoretical Framework

 12

model of only a particular set of concepts in an attempt to model concepts that have more
uniform development and dynamics of use. Therefore, coordination classes do not include
everything that would colloquially be referred to as a concept, but instead a set of concepts
that are expected to be more similar in development and use. Including only a subset of all
possible concepts allows for greater coherence between examples of coordination classes. The
operational definition of a coordination class requires that the concept have a particular
functional role in the individual’s reasoning, which I elaborate below.

Before describing the general qualifications for what concepts are classified as a
coordination class, I will describe a few examples of coordination classes. The canonical
coordination class discussed by diSessa and Sherin (1998) is force. They specify that the primary
function of this coordination class is to precisely identify forces in the world. This includes
identifying components of those forces such as position, direction, and magnitude. In this case,
each of these components is also a separate coordination class. For the coordination class of
position, the primary function is to precisely identify positions in the world. Identification of
positions could take place in the physical space or within a representation of space such as a
graph. These examples are intended to show that applying a coordination class can involve
identifying a complex set of information, such as the components of force, and possibly doing
so across contexts, such as physical space and graphs.

A coordination class is a model of knowledge in which the primary function of the
coordination class is to identify a type of information in the world, like force in the previous
example. Throughout the description of coordination classes, I will draw on examples from the
coordination class of surface area. It follows from the definition of coordination classes that the
primary function of the coordination class of surface area is to identify surface areas in the
world. Surface area will be discussed here as a simple example.

Coordination classes, unlike p-prims, are not assumed to be primitive knowledge
resources. In fact, coordination classes refer to the collection of knowledge resources that work
together to produce a particular competence. The model of coordination classes specifies that
these component knowledge resources form connections that govern what knowledge is used
together.

Coordination and Problems with Span and Alignment
Coordination class theory characterizes learning as a process of coordinating what

knowledge should and should not be applied within a context (diSessa & Sherin, 1998).
Coordination class theory specifies two main challenges in this process of coordinating
knowledge.

The first main challenge is an issue of alignment, which is essentially a measure of
whether an individual can correctly determine the relevant information of the coordination
class (diSessa & Wagner, 2005). This requires that for a given context, the individual correctly
determines the focal information of the coordination class. Sometimes there may be multiple
ways of determining the focal information. Alignment describes cases in which the individual
correctly determines the focal information regardless of the method and knowledge employed.

www.manaraa.com

 Theoretical Framework

 13

For example, there may be two ways to determine surface area, each using different
knowledge resources. An individual has adequate alignment in a situation if when using either
method he or she arrives at the same correct answer (diSessa & Wagner, 2005).

The second main challenge relates to the difficulty of recognizing the relevance of
knowledge across contexts, which is referred to as problems with span. Consider the following
three examples of student difficulties in applying a coordination class. The first two are
examples of a problem of span, while the third is an example of a problem with alignment.

 The individual incorrectly believes that his or her relevant knowledge is not applicable
in the given situation (lack of span).

 The individual recognizes the relevance of his or her knowledge, but does not know
how to identify the information in the given situation (lack of span).

 The individual believes that he or she has relevant knowledge, but he or she identifies
the information incorrectly in the given situation (lack of alignment).

Research using the Knowledge in Pieces theoretical framework typically focuses on
individuals that could be considered novices in the topic domain. However, coordination class is
the label for the expert form of knowledge, which appropriately uses knowledge resources to
produce the desired competence. Therefore, in a true coordination class, this is to say, in the
knowledge system of an expert with that particular concept, different types of knowledge work
together to accurately identify the focal information across all applicable contexts. A
coordination class is an ideal. We cannot demonstrate that an individual possesses this
knowledge, we can only identify individuals that do not possess this coordination class by
demonstrating problems of span or alignment.

An individual that has sufficient span and alignment in some context could be described
as having appropriate coordination in that context. Appropriate coordination is a determination
of the performance of an individual’s knowledge in a particular context and does not imply that
the individual would have appropriate coordination across all contexts. Thaden-Koch, Dufrense
and Mestre (2006) introduced the term “coordination system” as the name for a less than
complete coordination class. I will assume that the study’s participants have only coordination
systems, but I will refer to these as coordination classes as is consistent with much of the
previous literature (diSessa & Sherin, 1998; diSessa & Wagner, 2005).

Readout Strategies and Extraction
diSessa and Sherin (1998) define readout strategies as basic perceptual skills for

extracting information from the world. For example, when presented with an object, an
individual can hold the object and perceive its shape, size, color, texture, or weight. Each of
these things that can be perceived is tied to a readout strategy. For example, perceiving color is
a readout strategy. diSessa and Sherin (1998) refer to the perception that is generated with one
of these readout strategies as a “readout.”

www.manaraa.com

 Theoretical Framework

 14

Actually, diSessa and Sherin (1998) also use the word “readout” to refer to a more
expansive process of making inferences based upon gathering information using these readout
strategies. For example, diSessa and Sherin refer to the process of making inferences when they
claim that their subject was “reading out the amount of force” (p. 1179) and that the “issue is
one of readout” (p. 1180). This double use of the phrase readout was not intended (A. A.
diSessa, personal communication, April 3, 2012) and “readout” was intended to mean only the
immediate product of using a readout strategy.

For clarity, I will use the term “readout strategy” that has been used consistently, but
will not use the term “readout.” I will refer to the result of using a readout strategy as an
extraction, which is a term not previously used by coordination class literature. Extractions are
made in reference to a particular object. A perception of an object’s color is an example
extraction. Readout strategies are strategies that can produce a class of extractions. Readout
strategies are general and are not specific to a particular object. Extractions are not general, but
an application of a readout strategy in a particular context.

An important aspect of the coordination class model involves the selection of ways of
perceiving or extracting information about the world using these readout strategies. In general,
we expect individuals not to be limited in executing necessary extractions (diSessa & Sherin,
1998). However, an individual needs to use knowledge to determine what ways of perceiving
(or readout strategies) may be relevant.

An individual’s knowledge guides how he or she consciously or unconsciously selects
readout strategies that are relevant to the context. For example, when asked to calculate the
area of a surface, an individual may pay attention to the height and width of the surface and
not the color, because he or she has some knowledge that height and width are relevant to
surface area and color is not. However, without this inference he or she might not extract
width, which is akin to not attending to that feature in the environment.

Inferences, Causal Net, and Concept Projection
Once an individual has extracted the height and width, he or she must now use other

aspects of his or her existing knowledge, such as area = height * width, to make an inference or
set of inferences to determine the surface area. Inferences can be built from the information
extracted from the world and from existing knowledge. These inferences are defined as taking
place in the individual’s causal net, which is the term to describe the subset of an individual’s
knowledge system that relates to the coordination class (diSessa & Wagner, 2005).

Determining the surface area of a rectangle requires only one relatively simple
inference. However, the process of applying readout strategies and generating inferences may
be a much more complex, and possibly iterative, process. For example, when an individual
calculates the surface area of a shape composed of various triangles and semi-circles, it might
not be possible to extract all relevant lengths at once. A single extraction of the radius of one
semi-circle may cause an inference that two semi-circles of equal size create a circle. This
inference may redirect the individual’s attention to a new extraction, attempting to identify a
semi-circle of the same size that could complete the semi-circle. This focused attention to

www.manaraa.com

 Theoretical Framework

 15

aspects of the environment can be conscious as well as unconscious (Thaden-Koch, Dufrense &
Mestre, 2006).

The subset of knowledge from the causal net that an individual uses to identify the focal
information of the coordination class in one particular case is referred to as a concept
projection (diSessa & Wagner, 2005). This includes their chain of inferences, the content of their
extractions, and all knowledge that supported the final determination of the focal information.
Some of this knowledge is used in a chain of inferences to guide the iterative extractions from
the environment. These knowledge resources come from the individual’s causal net, which is
the sum of the individual’s knowledge that is relevant to the coordination class and is not
specific to any instance of reasoning.

Figure 1 shows a representation of some of the components of the coordination class
model of identifying the surface area of a 3 inch by 2 inch rectangle. As described above, the
individual must extract this information from the environment using readout strategies and
then develop inferences based upon those extractions and other knowledge. These inferences
and the extractions together form an inferential chain, which in Figure 1 is modeled as being
built from the top down. The concept projection is formed by this inferential chain and the
readout strategies.

 Width is 2 inches

 Height is 3 inches

 Equation for area is Area = Height x Width

 3 x 2 = 6

 The surface area is 6 inches2

Extractions

Inferences

Inferential
Chain

www.manaraa.com

 Theoretical Framework

 16

Figure 1. Graphical representation of the coordination class model of one concept projection
for surface area.

Conclusion
 This section has attempted to motivate the use of non-colloquial terms to describe
learning, to exemplify the type of theory refinement I undertake in this dissertation, and to
familiarize the reader with coordination class theory and the epistemological commitments of
the Knowledge in Pieces theoretical framework.

www.manaraa.com

 Methods

 17

METHODS

Participant Recruitment
 Participants were recruited from the UC Berkeley courses described below via an email
recruitment that was forwarded by their course instructor. The body of this email is shown
below.

Hello students in [fill in the course name here],

You are invited to participate in a research project studying how people learn to
program. If you chose to participate you will be given a $15 Amazon.com gift card for
an hour interview. You may be asked to participate in a second hour long interview. The
interviews will take place in Soda hall or Tolman hall and will be scheduled at your
convenience. If you are interested in participating, please fill out the form at the
following link and a researcher will contact you.

http://www.eecs.berkeley.edu/~colleenl/interview/

Participation in this research will have no bearing on your standing in the class and your
instructor will not know which students have chosen to participate.

Thank you,

Colleen Lewis (Graduate Student in Computer Science and Education)

Interested students emailed me their preferred interview times from a list of available
interview times listed online. Participants were scheduled on a first-come first-serve basis and
all participants who emailed me to schedule an interview were interviewed.

 Participants were given a $15 Amazon gift card for participating in the study. In
instances where a participant was interviewed multiple times, the participant received one $15
Amazon gift card for each interview.

Participants
Students enrolled in their first programming course were interviewed after they had

completed the programming content that is comparable to the content tested on the interview
questions. Each course from which students were recruited is described briefly below.

CS10 – Scratch-Based Introductory Programming Course (9 students): The course “The Beauty
and Joy of Computing” is the newest addition to UC Berkeley’s lower division curriculum
(Garcia, Harvey, & Segars, 2012) and uses a modified version of the Scratch
programming language (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) that adds
functions and lambda (Harvey & Mönig, 2010). The course uses a modified lab-centric

http://www.eecs.berkeley.edu/~colleenl/interview/

www.manaraa.com

 Methods

 18

structure (Titterton, Lewis, & Clancy, 2010) with two hours of lecture, one hour of
discussion, and four hours of lab a week.

CS3L – Scheme-Based Introductory Programming Course (6 students): UC Berkeley’s previous
introductory course “Introduction to symbolic programming” using the Scheme
programming language (Friedman & Felleisen, 1996) introduces students to basic
control structures and recursion. The course uses the lab-centric instruction approach
(Titterton, Lewis, & Clancy, 2010), which includes a single hour of lecture a week and six
hours of lab.

CS3S – Self-Paced Scheme-Based Introductory Programming Course (15 students): This course
is “self-paced” and does not have required class meetings. Students have the option of
taking a two- or four-unit version of the course. The four-unit self-paced version covers
roughly the same content as CS3L. While interviews took place at the end of the
semester, the content covered by individual students varied greatly. This was partially
because of the self-paced nature – some students were behind – and partially because
some students were only taking 2 units and were required to complete less content
throughout the semester. Despite the differences in background, all students that were
recruited from this class had seen the relevant content in their course.

Data Collection
Each participant was videotaped solving computer programming problems. The camera

was focused on the paper and the area around the paper. The intention was to capture the
students’ gestures when pointing to text from the problem and their inscriptions on the page.
Each student’s body and face were not captured so as to provide higher resolution of these
gestures and inscriptions. No demographic data was collected from participants.

Sample Size
Six students participated in the pilot round of data collection. All of these students were

recruited from a single offering of CS3L. In the first phase of the research, interviews were
conducted with seventeen students. Two of these seventeen participants were enrolled in CS10
and fifteen participants were enrolled in CS3S. In the second phase of the research, interviews
were conducted with seven students from the introductory programming course using the
programming language Scratch.

Students that had performed in the lowest quartile on the first exam in this class were
recruited to participate in the second phase of interviews. Four of these students were
interviewed more than once. During the first interview in phase 2, participants described how
to solve each of the programming problems from the first exam that they had taken in CS10 the
previous week.

Some of my analyses consider individual participants while other analyses considers all
participants from the pilot and first phase of data collection, all of whom answered the
questions described in this chapter.

www.manaraa.com

 Methods

 19

Interview Protocol
During the interview, participants solved a series of problems and were asked to talk

through their reasoning while they solved the problems. My protocol was modeled on
diSessa’s description of clinical interviewing (2007) and I provide details from my instantiation
of these techniques here. From diSessa’s description of clinical interviewing I have applied the
following principles:

Before beginning the interview, the participant was provided and signed consent
documents to participate in the research. The study was explained and any questions the
participant had were answered. I explained to participants that I was interested in
understanding how they thought about the problem and wanted them to talk aloud as they
solved the problems. Participants in the pilot and the first phase of research who used the
programming language Scheme were provided a warm-up question. Participants that used the
programming language Scratch were not provided a warm-up question.

The intent of the warm-up question, shown in Figure 4, was for students to practice
talking through their reasoning while solving a problem. After completing this question, I
provided encouragement to the interviewees either to continue talking through their reasoning
as they had done or to increase how much they were talking through their reasoning.

When solving the remaining problems, if a participant remained silent for an extended
period of time, I prompted them to continue talking, for example by saying “what are you
thinking?” If a participant asked a clarifying question about the problem, I redirected him or her
to a relevant phrase within the text of the problem. If the participant provided an
interpretation of the question and asked for confirmation, I provided confirmation if his or her
interpretation was correct or redirected the participant to a relevant phrase within the
provided question if his or her interpretation was not correct.

I attempted to avoid providing additional information to the participant or any
indication to the participant regarding whether or not his or her answer was correct. For
example, if a participant asked if an answer was correct, the interviewer frequently responded
by redirecting the question back to the participant, for example by saying “What do you think?”
The goal of this strategy was to provide additional insight into the participant’s reasoning and
to avoid providing additional resources such as whether or not their answer was correct.

After a student solved a problem, I frequently asked follow-up questions to attempt to
better understand his or her reasoning. For example, occasionally I repeated back a statement
the participant had said while solving the problem and asked what was meant by that
statement. Similarly, I occasionally identified an element of a representation created by the
participant and asked what that element meant or represented.

Occasionally these follow-up questions led the student to identify a mistake he or she
made in solving the problem; however, the follow-up questions were intended only to clarify

www.manaraa.com

 Methods

 20

some aspect of the participant’s reasoning that was perceived by the interviewer as ambiguous.
These questions were not intended to serve as tutoring or to support the participants’
reasoning. The student was not told if the answer to a question was correct or incorrect and
was permitted to move onto the next problem regardless of whether he or she had answered
the question correctly.

Analysis Methods
 Analysis methods that were specific to an individual chapter are discussed within that
chapter. The description of analysis methods described here are those that are applicable
across the dissertation.

 After each interview brief notes were taken regarding the content and quality of the
interview. In particular I recorded my estimation of the quality of the interview for further
analysis based upon the participants’ relative comfort during the interview and the extent to
which they were able to articulate their reasoning. These notes determined the order in which I
viewed the videos, viewing first the videos of participants that appeared comfortable and were
articulate about their reasoning. This may bias the results toward the reasoning of the more
articulate participants because those interviews were watched first. However, in identifying
case studies focusing on articulate students is necessary to provide the density of data
necessary for careful analysis. All of the videos were watched and some of the analysis includes
an analysis of all participants that answered particular questions.

 After all data was collected from Phase 1, data analysis began by viewing these videos.
This analysis continued during the collection of videos from Phase 2. Videos were watched from
start to finish, pausing the video to take notes about relevant details and episodes. For
example, a short summary of each participant’s solution to each problem was recorded in
addition to detailed notes regarding particular episodes. Episodes of interest were those in
which a student appeared to be using a technique to reason about a problem where that
technique was not specific to computer science. For example, I documented cases where
participants used various forms of representation, used general test-taking strategies such as
re-reading the question or working backwards from the answer options, rephrasing the
question or program text in their own words, or performed calculations similar to mathematics
calculations. In many cases the technique was not apparent and in others their technique
seemed dominated by computer programming specific content knowledge. My records of these
episodes of interest included the participant’s identifier, the interview problem, the time within
the interview, a short summary of the participant’s behavior and reasoning, and the reason for
my interest in this episode.

 These episodes were documented on index cards and these index cards were sorted
into clusters to attempt to identify relevant patterns within the data. Individual cases from
these clusters were selected for further analysis. These cases were transcribed and descriptive
memos were written for each to attempt to explain the content of that episode.

 Additional details regarding the analysis methods are provided in the relevant analysis
chapters.

www.manaraa.com

 Methods

 21

Recursion Background
The following section provides a detailed description of the focal interview questions

and essential background information regarding recursion. Readers familiar with recursion may
prefer to read the interview problems without the accompanying text that describes recursion
and the problem solutions.

Two of the interview questions refer to a single recursive function and I will use this
recursive function to introduce recursion in general. I will begin by describing the underlying
recurrence relationship from the questions, shown in Equation 1. Equation 1 shows an equation
relating exponentiation to repeated multiplication. For example, if the variable n is 3 and the
variable x is 5, the equation in Equation 1 becomes 53 = 5*52.

Equation 1. Recurrence relationship from the sample problem.

Equation 1 is a valid expression for representing an exponent to the power of one or
higher. Equation 2 shows an expression for calculating the value of the variable x raised to the
first power. This type of non-recursive expression in Figure 3 is typically referred to as a start
condition in mathematics or a base case in computer programming (Leron & Zazkis, 1986).

Equation 2. Base case from the sample problem.

Figure 2 shows a representation of the recurrence relationship from Equation 1 and
base case from Equation 2, in the programming language Snap (Harvey & Mönig, 2010), which
is a variant of Scratch (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).

Figure 2. Implementation of recurrence relationship from Equation 1 and base case from Equation 2 in Snap

www.manaraa.com

 Methods

 22

The function shown in Figure 2 takes two arguments, which are set to the values of the
variables x and n. For example, if we call the function with the arguments 4 and 2, the value of
the variable x would be set to 4 and the value of the variable n would be set to 2. This function
call would be made by double clicking on the expression shown in Figure 3.

Figure 3. A Snap function call provided the arguments 4 and 2.

If the value of the variable n is 1, the behavior of the program in Figure 2 is equivalent to
calculating x to the first power (or x1) as shown in Equation 2. The test for “if n equals 1” and
the result of setting the answer to the value of x appears in the first half of Figure 2. For any
value greater than 1, the variable named “answer” is set to the result of the algebraic
expression x*xn-1. This calculation is shown in the second line of the program in Figure 2 that
begins “set answer.” This requires multiplying the value of x, which is a known quantity, by the
unknown quantity xn-1. This unknown quantity can be determined by calling the function again.
This is equivalent to using the mathematical representation shown in Equation 1 to calculate
the value of x raised to the power of n. Then we use Equation 1 again to calculate the value of x
raised to the power of n-1. In both uses of Equation 1, the value of n will be different, one less
than the previous value of n.

This process of sequentially executing the function with lower values of n continues until
the new value of the variable n is 1. At this point the variable named “answer” is set to the
value of x and is returned to the previous function call. For example, the call to the function in
Figure 2 with the arguments 4 and 2 would make a recursive call with the arguments 4 and 1.
This function call with arguments 4 and 1 would return the value of x, 4, to the previous
recursive call. In that previous recursive call, this returned value would replace the recursive call
that was made there.

Interview Questions

Warm-up Question
The interviews in Phase 1 began with a warm-up question shown in Figure 4. Due to an

omission in the preparation of materials, the two students who were enrolled in the Scratch-
based programming course were not given a warm-up question.

What does (mystery 3 10) return?

(define (mystery x y)

 (+ 7 (* x 4) (* (/ y 5) (- x y))))

Figure 4. Warm-up question used during interviews in Scheme

After the interviewee answered the warm-up question, the interviewer provided the
participant a stack of questions to answer with one question per page. The problems were
multiple-choice format. Recall that these questions were the questions identified by Reges
(2008) as those most highly correlated with success on the 1988 Advanced Placement
Computer Science (APCS) exam translated into Snap and Scheme. These questions were chosen

www.manaraa.com

 Methods

 23

because they would align the interview with content from the APCS curriculum and because
these correlations may indicate that the questions tested a core competence that was relevant
across many multiple-choice and free-response questions on the exam.

Interview Question 1 – Tracing Question
A variant of the program shown in Figure 2, with an obfuscated function name

“WhatIsIt”, appeared on the 1988 Advanced Placement Computer Science (APCS) exam in the
programming language Pascal. The interview participants were provided a version of this
question translated into the programming language from their course. A version translated into
Scheme is shown below in Figure 5. A version in Snap with the original function name is shown
below in Figure 6.

The differences between these two representations of the same function may warrant
curiosity regarding what differences in reasoning arise from these differences in programming
language. In the data collected, there were no identifiable patterns of reasoning that separated
participants who used each programming language. My hypothesis is that differences in
participant reasoning caused by the programming language were insignificant compared to the
variation between individuals. Given the lack of data, differences in representation will not be
discussed further. For consistency and ease of reference, I will use the Scheme-based
representation of functions and function calls for all inline references in the remainder of the
dissertation.

What value is returned by (WhatIsIt 4 4)?

 (define (WhatIsIt x n)

(if (= n 1)

x

(* x (WhatIsIt x (- n 1))))

A) 8 B) 16 C) 24 D) 64 E) 256
Figure 5. The “Tracing Question”: a replication of a question from the 1988 APCS exam, translated to Scheme.

www.manaraa.com

 Methods

 24

What value is returned by ?

A) 8 B) 16 C) 24 D) 64 E) 256

Figure 6. The “Tracing Question”: a replication of a question from the 1988 APCS exam,
translated to Snap.

The first question, after the warm-up question in Phase 1, asked students to calculate
the value of (WhatIsIt 4 4). Throughout the dissertation I refer to as the tracing question.

The call to (WhatIsIt 4 4) generates a call to (WhatIsIt 4 3) and multiplies the
result of that by 4. This process is repeated and the value of the variable x is repeatedly
multiplied. The correct answer from this set of calculations is 256 or 44. Figure 7 shows the
recursive calls generated by the initial call to (WhatIsIt 4 4). The underlined portion on

each line in Figure 7 is expanded in the next line to show the result of that recursive call. The
final line shows the pending multiplications from the previous recursive calls and the value
returned by the call to (WhatIsIt 4 1).

www.manaraa.com

 Methods

 25

Figure 7. Recursive calls generated by a call to (WhatIsIt 4 4).

Interview Question 2 – Infinite-loop Question
The question shown in Figure 35 immediately followed the tracing question on the 1988

AP CS exam and was the second interview question used in Phase 1. This question, which I refer
to as the “infinite-loop question,” asked the student to reason about cases that do not create
an infinite loop in the function WhatIsIt.

Which of the following is a necessary and sufficient condition for the function WhatIsIt to

return a value if it is assumed that the values of n and x are small in magnitude and are both

whole numbers?

A) n > 0

B) n = 0

C) n > 0 and x > 0

D) x ≤ n and n > 0

E) n ≤ x and n > 0

Figure 8. The “infinite-loop question”: a replication of a question from the 1988 APCS exam.

The function WhatIsIt will terminate when the value of n is 1. However, if the value

of n never becomes 1, a call to WhatIsIt will result in an infinite loop, meaning it will never

terminate. For example, if the function WhatIsIt is called with a value of n less than 1, as
shown in Figure 46, the recursive call will never stop.

(WhatIsIt 0)

(* 4 (WhatIsIt 4 -1))

(* 4 (* 4 (WhatIsIt 4 -2)))

(* 4 (* 4 (* 4 (WhatIsIt 4 -3))))

(* 4 (* 4 (* 4 (* 4 (WhatIsIt …

Figure 9. Recursive calls generated by a call to (WhatIsIt 4 0).

Interview Question 3 – Boolean Question
The third question asked students to select an answer option that described a line of

code. Translated versions of the question are shown below in Figure 10 and Figure 11. This
question was the question most highly correlated with success on the 1988 APCS exam (Reges,
2008).

If b is a Boolean variable, then the function below has what effect?

www.manaraa.com

 Methods

 26

(define (foo b)

 (let ((b (equal? b #f)))

 b))

A) It causes b to have value false regardless of its value just before the statement was

executed.

B) It always changes the value of b.

C) It changes the value of b if and only if b had value true just before the statement was

executed.

Figure 10. The Boolean question in Scheme, a translated version of the question from the 1988 AP CS exam

If is a Boolean variable, then the statement below has what effect?

A) It causes to have value false regardless of its value just before the statement was

executed.

B) It always changes the value of .

C) It changes the value of if and only if had value true just before the statement was

executed.
Figure 11. The Boolean question in Scratch, a translated version of the question from the 1988 AP CS exam

 The Scheme equivalent of the question includes defines a function, using the syntax
from the first line of Figure 10 “(define (foo b).” The argument to this function is “b,”
which establishes the variable named “b.” This is necessary in the Scheme version because the
participants from the Scheme-based courses did not yet have experience with persistent
variables and only had experience using function arguments or “let” to create variables.
Technically, by using “let,” the Scheme version also creates a new variable named “b” rather
than modifying the initial variable, but this is merely a limitation of using a functional
programming paradigm.

 Despite the differences, both versions of the code can be described in the same way.
They both always change the value of the variable “b,” which corresponds to multiple-choice
option B. The expression tests if the initial value of the variable “b” is false. The result of this is
set to be the new value of the variable “b.” If the variable “b” starts out with the value of
“true,” then the test of whether it is equal to “false” will be “false” and the variable “b” will be
changed from “true” to “false.” If the variable “b” starts out with the value of “false,” then the
test of whether it is equal to “false” will be “true” and the variable “b” will be changed from
“false” to “true.”

www.manaraa.com

 Methods

 27

 The original version of the question included two additional multiple-choice options.
These options were both incorrect. These stated that “It causes a compile-time error message”
and that “It causes a run-time error message.” These multiple-choice options were not relevant
for testing students using the programming language Scratch, where it is difficult to create
syntactically invalid code. For consistency I removed both the Scratch and Scheme versions
from the answer options presented to the participants regardless of what programming
language they used during the interview.

 Due to time constraints, participants’ solutions to this problem are not described in
detail in this dissertation.

Interview Question 4 – Wow Question
The fourth question asked students to calculate the value of (Wow 16). The function Wow is
shown below in Figure 12.

The procedure call (wow 16) will yield as output which of the following sequences of

numbers?

(define (wow n)

 (begin

 (if (> n 1)

 (wow (/ n 2)))

 (show n)))

A) 10 8 6 4 2

B) 16 8 4 2 1

C) 1 2 4 8 16

D) 32 16 8 4 2

E) 2 4 8 16 32

Figure 12. The Wow question, a translated version of the question from the 1988 AP CS exam

This function included an “if” that does not have a false case. Most of the students
misinterpreted the expression “(show n)” as a false case for the “if.” This made it difficult to
analyze participants’ understanding of the recursion and therefore participants’ solutions to
this problem are not analyzed in this dissertation.

Interview Question 5 – Multiplication Question
The final question provides multiple-choice options to fill in the blanks in a function to

recursively multiply two integers. The question shown in Figure 44 was provided to students
using Scheme in their programming course and the question shown in Figure 14 was provided
to students using Snap in their programming course. Each of these answer options specifies a
distinct recursive function and below I explain the correct answer, option D, as well as the
behavior of each of the incorrect answers.

www.manaraa.com

 Methods

 28

Figure 13. Translated version of the multiplication question from the 1988 APCS exam in the programming language

Scheme.

Figure 14. Translated version of the multiplication question from the 1988 APCS exam in the programming language

Snap.

The question specified five options for completing the function mult; each option

specified content for the true case for the “if” (statement 1) and the false case for the “if”
(statement 2) for the function. For example, Figure 15 shows the correct completed function
specified by answer option D.

www.manaraa.com

 Methods

 29

Figure 15. Correct version of the Mult function as specified by answer option D.

Answer Option A (Incorrect)
The recursive function specified by answer option A is shown in Figure 16 and is trivially

incorrect. It does not specify a value for the false case of the “if” and therefore the mult
function, as shown in Figure 16, only provides the correct answer when the value of x is 1. For
all other values of x, the function does not multiply the values of the variables x and y.

Figure 16. Incorrect version of the mult function as specified by answer option A.

Answer Option B (Incorrect)
Answer options B through E all provide the same value, y, for the base case, when x is

equal to 1. This corresponds to multiplying the value of y by 1, which is always y. A
mathematical representation of this base case for options B through E is shown in Equation 3.

Equation 3. Based case specified by answer options B through E for the multiplication question from the 1988 AP CS exam

The function specified by answer option B is shown in Figure 17.

Figure 17. Incorrect version of the mult function as specified by answer option B.

The recurrence relationship from answer option B is provided below in Equation 4.

 () ()

Equation 4. Incorrect recurrence relationship as indicated by answer option B

(define (mult x y)

 (if (= x 1)

 y

 (+ y (mult (- x 1) y))))

(define (mult x y)

 (if (= x 1)

 x*y))

(define (mult x y)

 (if (= x 1)

 y

 (mult (- x 1) (+ y 1))))

www.manaraa.com

 Methods

 30

Equation 5 shows the recurrence relationship from answer option B expanded using
algebra. From this expanded expression it is clear that x times y is not equal to the right hand
side of the equation for all values of x and y and therefore that answer option B is incorrect.

 ()

Equation 5. Expansion of incorrect recurrence relationship as indicated by answer option B

Figure 18 shows the resulting recursive calls from a call to (Mult 4 4) as specified by
answer options B. The correct answer to return from this function call is the product of 4 and 4,
16. Between each call the value of x is decreased and the value of y is increased. When x is
equal to 1, the value of y is returned. Therefore the final recursive call (mult 1 7) returns
the value 7.

Figure 18. Recursive calls generated by a call to (Mult 4 4) with answer option B.

Answer Option C (Incorrect)
The function specified by answer option C is shown in Figure 19.

Figure 19. Incorrect version of the mult function as specified by answer option C.

Equation 6 shows both the original recursive relationship specified by answer option C
as well as a version expanded using algebra. The resulting calculation of 2y*(x-1) is clearly not
equal to the product of x and y for all positive integer values of x and y.

 () () ()

(define (mult x y)

 (if (= x 1)

 y

 (mult (- x 1) (+ y 1))))

www.manaraa.com

 Methods

 31

Equation 6. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option C

Answer C follows a similar pattern to the recursive calls generated by answer option B.
Figure 20 shows a function call of (mult 4 4) to the function specified by answer option C.

The value of x decreases by 1 with each recursive call and the value of y is doubled with each
recursive call. When x is equal to 1, the value of y is returned. Therefore the final recursive call
(mult 1 32) returns the value 32, not the correct answer of 16.

Figure 20. Recursive calls generated by a call to (Mult 4 4) with answer option C.

Answer Option D (Correct)
The function specified by answer option D is shown in Figure 21.

Figure 21. Correct version of the mult function as specified by answer option D.

Equation 7 is a mathematical representation of the recurrence relationship from the
correct version of the multiplication function. This demonstrates the property that
multiplication can be represented as repeated addition.

 ()

Equation 7. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option D

The value of x decreases at each recursive call, but the value of y remains the same.
Figure 22 shows that each recursive call, shown underlined and bolded, can be expanded based
upon the second statement in answer D. The statement (+y (mult (- x 1) y)) adds 4,
the value of y, to each successive recursive call. The final recursive call (mult 1 4) is 4, since

the value of x results in it evaluating the base case. The base case returns the value of y to be

(define (mult x y)

 (if (= x 1)

 y

 (+ y (mult (- x 1) y))))

www.manaraa.com

 Methods

 32

combined with the previous pending sums. The diagram in Figure 22 shows how the repeated
addition of 4 accumulates to result in the final calculation of 4+4+4+4.

Figure 22. Recursive calls generated by a call to (Mult 4 4) with answer option D.

Answer Option E (Incorrect)
The function specified by answer option E is shown in Figure 23.

Figure 23. Incorrect version of the mult function as specified by answer option E.

The recurrence relationship from answer option E, shown in Equation 8, is nearly
identical to that of the correct answer. The only difference is that the value y is multiplied by
rather than added to a recursive call to the function. Instead of multiplying the values x and n,
this function multiplies x by itself n times. In other words, it calculates x to the power of n.
Recall that the first interview question involving the function WhatIsIt performed the same
calculation. The only differences between the functions specified by answer option E and the
WhatIsIt function are the names of the variables and the name of the function.

 ()

Equation 8. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option D

Figure 24 shows a diagram parallel in structure to the one in Figure 22 for the function call
(mult 4 4) for answer option E, which results in the value of 256 instead of the correct
value of 16.

(define (mult x y)

 (if (= x 1)

 y

 (* y (mult (- x 1) y))))

www.manaraa.com

 Methods

 33

Figure 24. Recursive calls generated by a call to (Mult 4 4) with answer option D.

www.manaraa.com

 The Coordination Class of State

 34

THE COORDINATION CLASS OF STATE

“State management is the essence of programming. Every technique and tool in the
programmer’s repertoire is concerned with supporting versatile and efficient
management of the state space.” (p. 6-7, Shinners-Kennedy, 2008)

Shinners-Kennedy argues that an understanding of state and state change operations is
essential to successful programming and this argument has been made in many forms over the
years. I define computer program state to include all values calculated and maintained by the
machine when executing a program. This includes user-defined variables, arguments to
functions, return values from expressions and sub-expressions, and stack information such as
the program counter and nesting of function calls. du Boulay and his colleagues (du Boulay,
O'Shea, & Monk, 1989; du Boulay, 1989) developed a claim similar to Shinners-Kennedy
through a focus on what they call the notional machine, which is essentially a description of
how program state can be inspected and changed. du Boulay and his colleagues argue that
students need a firm understanding of these properties of the machine to be successful in
writing programs and also that teachers and instructional materials should make these
properties explicit to students. Twelve years later, Ben-Ari (2001) reiterated the importance of
students’ understanding of the notional machine and critiqued object-oriented programming
languages for obscuring aspects of the machine. These ideas about the importance of state
have come to fruition through the design of programming languages such as Logo, Boxer,
Scratch, and Alice and one notable pedagogical approach (Sajaniemi & Kuittinen, 2005;
Sajaniemi, Kuittinen, & Tikansalo, 2008); however, there are a number of open questions about
the nature of students’ knowledge about state.

A number of programming languages have been designed with the goal of making state
visible (Papert 1980; diSessa, 2000; Cooper, Dann, & Pausch, 2000) The researchers involved in
the design and evaluation of the Alice programming language emphasize the importance of
program state, particularly for understanding and debugging code (Cooper, Dann, & Pausch,
2000; Dann et al., 2003; Powers, Ecott, & Hirshfield, 2007). They assert that “the source of
confusion in figuring out what went wrong, in all but the most trivial code, is an inadequate
understanding of the program's state.” (p. 109, Cooper, Dann, & Pausch, 2000). The design of
the Alice programming language was informed by this emphasis on state; in the Alice
programming language, commands can move the character’s position on the screen, literally
making state visible. This is the same mechanism of making state visible as was developed in
the programming language Logo (Papert, 1980).

In response to the importance of state, Sajaniemi and Kuittinen (2005) have attempted
to help students recognize common patterns of state change operations. Their pedagogy
highlights the roles of variables in programs. They claim that 10 roles account for 99% of all
variable roles used in introductory programming texts. In their more recent work (Sajaniemi,
Kuittinen, & Tikansalo, 2008), they ask students to represent the state of an object-oriented

www.manaraa.com

 The Coordination Class of State

 35

program at a moment in time. They use what details a student represents as an indication of
what aspects of state that student believe to be important. They track how what details a
student represents changes during a programming course. These findings focus on how
students represent the relationships between methods, classes, and objects in object-oriented
programming.

While these researchers above argue for the pedagogical importance of program state
and patterns in student learning, they do not investigate the nature of knowledge regarding
programming state. Based upon the empirical work of Sajaniemi and Kuittinen (2005) and
characterizations of the knowledge by du Boulay and his colleagues (du Boulay, O'Shea, &
Monk, 1989; du Boulay, 1989), it appears that knowledge of state is assumed to be primarily
factual in nature. I acknowledge that factual knowledge is important and possibly a prerequisite
to competence with programming state, but I expect that expert knowledge of program state
includes more than factual knowledge.

Previous research that explores the nature of programming knowledge moves beyond
fact-centric models of program state knowledge, but does not attempt to explain the moment-
by-moment interaction of knowledge. The first is diSessa’s work with differences in structural
and functional knowledge of computer programming (1986). The second is the work of the
BRACElet project, which has investigated a possible hierarchy of programming skills (Lopez,
Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009).

diSessa (1986) discusses two complementary models of individuals’ understandings of a
programming environment. An individual can have elements of a structural model, which, like
the idea of a notional machine (du Boulay, O'Shea, & Monk, 1989; du Boulay, 1989), is a precise
model for the state change operations in the system. An individual can also have elements of a
functional model, composed of particular ways of accomplishing things in the programming
environment. diSessa (1986) highlights the need for mutual bootstrapping between these two
types of models. A structural model alone provides a barrier to early learning and is unlikely to
support “fluid interaction with the system” (p. 205, diSessa, 1986). A functional model may
support fluid interaction, but alone does not provide the necessary knowledge for debugging a
program line by line. While facts are necessary for both a structural and functional model the
distinction between functional and structural knowledge is independent of whether this
knowledge can be classified as factual.

Researchers on the BRACElet project have set out to achieve a similar goal of
meaningfully segmenting programming knowledge (Lopez, Whalley, Robbins, & Lister, 2008;
Venables, Tan, & Lister, 2009). In contrast to diSessa’s model of a mutual bootstrapping process
between different types of knowledge (1986), these researchers claim that there exists a
hierarchy of programming skills. The methods employed in the BRACElet project are primarily
quantitative, based upon students’ responses to code writing, tracing, and explaining tasks.
They identify knowledge of basic programming constructs as at the bottom of the hierarchy and
writing code at the top.

www.manaraa.com

 The Coordination Class of State

 36

The BRACElet project researchers draw these conclusions based upon patterns of
students’ responses to the questions that test these competences, and their data suggest the
existence of a hierarchical dependency. However, the same patterns would be present if the
questions testing skills at the top of this hierarchy were coincidentally the most difficult.
Existing models have made important theoretical contributions to understanding the domain,
but do not provide the granularity to explain moment-by-moment dynamics of individuals’
reasoning about program state.

These models are the state of the art in computer science education, but models of
knowledge in other domains are more ambitious regarding moment-by-moment analysis of
individuals’ reasoning (e.g., diSessa, 1993; diSessa & Sherin 1998)

To contribute to our understanding of the nature of computer programming knowledge,
I show how a formal model of a particular type of concept applies to the learning of computer
programming. Previous research from physics education (diSessa & Sherin, 1989) developed a
theoretical model for a particular type of concept that the authors refer to as “coordination
classes” (diSessa & Sherin, 1989). The details of this theoretical model were described in the
theoretical framework section. This model stipulates that a coordination class is used by
individuals to identify some focal information in the world. For example, in the case of the
coordination class of force, this requires identifying forces, which includes identifying the
position, direction, and magnitude of the force. Coordination classes have been identified
within physics (diSessa and Sherin, 1998; Wittman, 2001; Parnafes, 2007; Levrini & diSessa
2008) and mathematics (diSessa & Wagner, 2005; Wagner, 2006). It is an empirical and
theoretical question whether coordination class theory applies to concepts outside of these
domains, but this theoretical model provides the potential to move toward moment-by-
moment models of students’ understanding of the importanct concept of state. Drawing from a
larger study to be described later, in the following analysis I argue that the theory is relevant to
computer science and can be refined by application to the concept of state.

In the current analysis I propose that the concept of state is a coordination class. In the
computer science context, state includes values calculated and maintained by the machine
when executing a program. This includes user-defined variables, arguments to functions, return
values from expressions and sub-expressions, and stack information such as the program
counter and nesting of function calls. I show that students use everyday knowledge when
reasoning about computer program state.

This coordination class analysis requires command of the possibly unfamiliar vocabulary
provided in the theoretical framework chapter. I believe that using coordination class theory
provides other benefits, which in this analysis outweigh the costs. For example, the application
of coordination class theory in this analysis was motivated by the following theoretical and
pedagogical goals.

A first theoretical goal was to use precisely defined terms to describe the nature of
computer science knowledge. The coordination class constructs serve to name and
operationalize aspects of the participants’ knowledge, reasoning, and performance that are

www.manaraa.com

 The Coordination Class of State

 37

relevant to understanding their solution paths. In the process of describing rich episodes from
the data corpus, it is beneficial to utilize established constructs. This is a better alternative than
inventing new constructs because it likely provides additional clarity by using time-tested and
validated constructs and increases comparability to previous studies.

The second theoretical motivation for this work was to extend coordination class theory
outside of physics and mathematics. Coordination class theory is not expected to be a static
fully-refined theory (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). Instead, it is expected
to be refined and tested by additional researchers. For example, many researchers have
introduced new constructs and engaged in other forms of theory refinement (diSessa & Sherin,
1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Thaden-Koch, Dufrense &
Mestre, 2006; Parnafes, 2007; Levrini & diSessa 2008). My analysis provides the first analysis of
a coordination class outside of the domain of physics or mathematics. The successful
application of the theory to this new domain provides additional validation of the theory and
this extension also works toward identifying commonalities and differences in learning across
domains.

The third theoretical goal was to make coordination class theory more comprehensible
and therefore more valuable to the educational research community. diSessa and Sherin (1998)
explicitly used empirical data as a tool to make the constructs from coordination class theory
better understood by readers. Along the same lines, a goal of my empirical analysis is to
contribute an example that can make coordination class theory more comprehensible,
particularly for computer science educators.

The first pedagogical goal is to develop better models of the commonalities and
differences in learning across domains. This has immense potential for computer science
education, which is a relatively young field compared to mathematics or physics. These non-
computing domains have a much longer history of educational research and may provide
insights regarding teaching and learning that could improve computer science education. A
missing link in connecting these bodies of research is the open questions regarding the
commonalities and differences in learning between computer science and other domains.

The second pedagogical goal is to join others (Papert, 1980; diSessa, 1986; du Boulay,
1989; Cooper, Dann, & Pausch, 2000) in identifying state as a central concept in computer
programming. I hypothesize that there may be commonalities in students’ knowledge of state
across everyday and computer science contexts. Focusing students’ attention on state and their
relevant prior experience with state may help students be more effective in learning about new
types of state.

As a first pass, state is a candidate for a coordination class because an expert in dealing
with state can work with state fluidly across contexts to identify a type of information (diSessa
& Sherin, 1998) from the world or, in this study, to identify state in computer programs.
Coordination class theory provides a target for students’ understanding of computer program
state. If state is a coordination class, competence with computer programming state includes
not only the necessary facts regarding the behavior of the programming language, but the

www.manaraa.com

 The Coordination Class of State

 38

coordination of this knowledge to achieve consistent and correct performance within various
contexts (referred to as alignment by diSessa & Sherin, 1998). To name only a few
considerations in this process, individuals must use knowledge about the scope of variables and
about state change operations, which includes control structures that change the state of the
program counter. The full set of knowledge, including knowledge related to these components
and others, which an individual can use to identify the focal information of the coordination
class, is referred to as the individual’s causal net (diSessa & Sherin, 1998).

The focus on state rather than computer program state or a sub-component of
computer program state such as arguments, variables, or call-stack state is a decision with
theoretical and practical implications.

Previous coordination class researchers have discussed the difficulty of identifying what
coordination class individuals are using because many coordination classes are highly
interconnected (Thaden-Koch, Dufrense & Mestre, 2006). diSessa and Wagner (2005)
developed the idea that coordination classes exist in close relations to a collection of other
coordination classes called coordination clusters. For example, diSessa & Sherin (1998) primarily
emphasize force, which operates in a similar cluster of closely related coordination classes such
as position, velocity, and acceleration. It is likely that no coordination class exists in complete
isolation from other coordination classes, but coordination class researchers typically still
discuss the role of a single coordination class (Wagner, 2005; Wagner, 2006; Levrini & diSessa
2008) or a few coordination classes (diSessa & Sherin, 1998; Wittman, 2001; diSessa & Sherin,
1998; Parnafes, 2007) as primary in students’ reasoning.

I chose to analyze the coordination class of state. An alternative would be to analyze
individual components of state separately. I hypothesize that many of the subcomponents of
state have significant conceptual overlap and that identifying these commonalities may be
beneficial for students and educators. For example, I expect that the competence required
identifying the state of variables overlaps significantly with the competence required to identify
the state of user-defined variables. This is not a hypothesis that I systematically validate in this
study, but it served to motivate the selection of the focus on the unified coordination class of
state.

I focus on the coordination class of state rather than only computer program state
because I build upon the hypothesis from Knowledge in Pieces (diSessa, 1993) that domain
expertise may develop from and include intuitive knowledge. Previous research in the
Knowledge in Pieces line has focused extensively on the use and productivity of students’
intuitive knowledge in physics (e.g., diSessa, 1993; diSessa &; Parnafes, 2007). Everyday
interaction with the physical world provides an obvious source of intuitive knowledge. In
programming, the existence of relevant intuitive knowledge is less obvious, but potentially just
as rich. Nevertheless, if program state is a coordination class, as I propose, then intuitive
knowledge should interact with and in some cases support expert knowledge.

Shinners-Kennedy (2008) argues for the “everydayness” of state. He enumerates a
diverse set of stateful systems that permeate everyday life. From a wedding band indicating an

www.manaraa.com

 The Coordination Class of State

 39

individual’s state as married or single to a scoreboard showing the score in a sporting event, he
argues that people are essentially experts in reasoning about state. For example, the score in a
sporting event changes with a specific set of known state-change operations. Shinners-
Kennedy’s arguments align with my expectations of individuals’ experience with state. State as
a concept is not limited to a programming context. As Shinners-Kennedy argues, stateful
systems and representations of those states surround us. While the relevance of this
experience to computer programming is contestable, the existence of these stateful systems
and therefore individuals’ experience with them is not. Given this ubiquitous experience with
stateful systems and representations of those states, it may be reasonable to expect that
individuals have developed intuitions regarding stateful systems. With this potential source of
rich intuitive knowledge regarding everyday examples of state, it is relevant to question how
this knowledge of state might be used in the development of expertise with computer
programming state.

The case study in this chapter is taken from a student reasoning about a computer
science problem, and her everyday knowledge of state is of central focus in understanding her
reasoning.

diSessa and Sherin (1998) provided theoretical and empirical requirements for
identifying a coordination class. This section provides an argument regarding the plausibility
that state is a coordination class. While this mapping between the requirements of
coordination class theory and state present a plausibility argument that state is a coordination
class, it is possible that the behavior of individuals’ knowledge would not match the predictions
based upon the model of the nature and interaction of knowledge. Therefore it is important to
provide empirical validation of the model. This is not done using a large-scale quantitative
study, but instead using process data from individuals’ reasoning about relevant problems.

The data are taken from a portion of an interview with a college student named Megan
(pseudonym) while she was solving a question taken from her previous course exam. During the
focal episodes, she considered the possible values of two variables “A” and “B” and the
behavior of the conditional “and” in the expression “A and B.” From the computer science
perspective she was attempting to identify the set of legal states of the variables “A” and “B”
and the output state of the “and.” During the focal episodes Megan used her everyday
knowledge of both “if” and “and” to reason about the expression “A and B.”

I will present four episodes. The four episodes are sequential and show various
components of her coordination of state for the conditional “and.” These episodes document
challenges and opportunities to building upon everyday knowledge. In each of the excerpts I
identify active components of her coordination class of state such as elements from her causal
net that are and are not used in concept projections to determine the behavior of “and” for
different input states.

Methods
The episodes presented in this analysis are taken from a larger study designed to

identify students’ productive out-of-domain knowledge. The data consists of videotapes of

www.manaraa.com

 The Coordination Class of State

 40

semi-structured clinical interviews. The design of the interviews and study was informed by a
line of work focused on the role of students’ prior knowledge. This line of research, referred to
as Knowledge in Pieces (diSessa, 1993), provided me methodological examples (diSessa &
Sherin, 1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Thaden-Koch, Dufrense
& Mestre, 2006; Parnafes, 2007; Levrini & diSessa 2008) and is the line of work from which I
draw coordination class theory. The hypothesis that program state was a coordination class had
been developed prior to data collection for this study.

The participants were recruited from two introductory programming courses at the
University of California, Berkeley and the interview used the programming language from the
participants’ course, either Scheme or a variant of the Scratch programming language
(Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) known as Snap (Harvey & Mönig, 2010).

Content logs were created of all video data and episodes in which a participant
experienced difficulty reasoning about or tracking state were flagged for further analysis. The
episodes were of interest because when a participant experienced difficulty solving a problem
he or she would frequently make statements that made aspects of his or her reasoning visible.
Episodes of an individual solving a problem correctly often did not include evidence of that
individual’s reasoning process. To evaluate theories of learning and knowing it is necessary to
select episodes that provide sufficient information regarding the participant’s reasoning
(diSessa, 1993). I flagged examples when an individual experienced difficulty because of the
prevalence of elaboration of an individual’s reasoning in these situations. These excerpts were
transcribed and annotated with information regarding gestures and inscriptions made by the
participant.

Ultimately, the episodes presented in this case study were selected because of Megan’s
articulateness about her reasoning and because they provided the opportunity to discuss a
number of phenomena described in previous coordination class analyses.

The presentation of data is separated from the coordination class analysis of these data.
For each episode I provide a summary of the episode, which is a narration of the episode and
attempts to provide a clear representation of Megan’s reasoning and her interactions with me,
the interviewer. Extended quotations are provided in the summary to provide the reader the
opportunity to evaluate the validity of the analysis (Corbin & Strauss, 2008). Portions of the
interview that are not of central interest are summarized in lieu of extended quotations.

Following each summary section, I interpret Megan’s knowledge and reasoning using
coordination class analysis and my interpretations are drawn from these extended quotations.
I identify specific causal net elements that Megan appeared to use to identify state. In
comparison to analysis of students’ understanding of physical phenomenon (diSessa & Sherin,
1998) these are only a best approximation of the nature and scope of this knowledge because
there is no previous research in computer science documenting knowledge elements as has
been done in physics (diSessa, 1993).

www.manaraa.com

 The Coordination Class of State

 41

Explanation of Focal Question
The following section provides background regarding the interview context and details

regarding the programming content for readers less familiar with computer programming or
the programming language Scratch.

During the interview, Megan solved a problem from a recent exam in her introductory
programming course, which asked what the domain and range were for the function foo
shown in Figure 25. The episodes in this case study focus on her reasoning about a subset of
this problem.

Figure 25. Original problem context from Megan's exam

When solving this problem, she discussed at length the expression “A and B,” shown in
Figure 26, and these discussions are the focus of the analysis. Figure 26 includes the variables

 and . I will refer to these variables as “A” and “B” to clearly distinguish the variable
from the article: a. Relating to the original problem context, Megan reasoned about what the
variables “A” and “B” could be.

Figure 26. Focal expression considered by Megan.

As background, variables in the Snap programming language, like many programming
languages, can be set to a value of true or false. However, students may only be exposed to a
more narrow set of possible states of variables, not including Booleans. Sajaniemi (2002) found
that of the 557 variables provided in three introductory programing textbooks, only six (or
about 1%) of the variables stored a Boolean value. This suggests that students might have little
exposure to cases like the one shown in Figure 26, where the variables “A” and “B” store a
Boolean value. However, Booleans are not generally unfamiliar to students. Novice
programmers commonly use Booleans in conditional control structure such as “if.” It is an open
question whether students who do not find using Booleans in control structures to be
challenging do find storing Booleans in variables to be challenging. A related observation is that
novices will frequently avoid a return statement that returns a Boolean without enclosing the
return statement within an “if.” Clancy (2004) reports that students will rewrite a statement
like “return x = = y;” as “if (x = = y) return true; else return false;”

The conditional “and” as shown in Figure 26 works like a function that starts with the
initial state of two arguments and then returns a value. The conditional “and” will return true if
both of the arguments are true and otherwise will return false. This output state from “and”
may be stored in a variable or be the input to another function. Figure 27 shows a summary of
the behavior of the conditional “and.”

www.manaraa.com

 The Coordination Class of State

 42

True True True

True False False

False True False

False False False
Figure 27. Truth table for the state of the variables “A” and “B” and the resulting output of the focal expression “A and

B”

In many programming languages, the equivalent of the expression from Figure 26 is not
valid without additional information specifying what to do with the return value from the
“and.” Traditionally, the return value would be used in a control structure such as “if” or
“while.” In Snap, the language used by Megan, it is possible to execute this expression without
additional code; you can simply double click on any expression and a small speech bubble
shows the return value.

The “if” control structure can be thought of as a function that takes two arguments: a
Boolean and an expression or set of expressions. These expressions are executed if and only if
the Boolean provided to the “if” was true. The “if” is not responsible for the processing of the
conditional expression, only operating on that intermediate state that is returned by the
conditional expression. Consider the expression shown below in Figure 28.

Figure 28. Example "if" expression in the programming language Scratch.

 Students may incorrectly believe that the “if” operates on an expression such as “n = 1.”
Instead it takes the result of evaluating that expression, which will be either true or false. This
may make the “if” appear less “smart” than might otherwise be assumed by students (see
Clancy, 2004). A relevant element of structural knowledge, (diSessa, 1986) is what state is
accessible to the “if.” The “if” only receives as input the result or state that is output by the
expression contained as the test in an “if” expression.

Case Study: Megan
This case study is broken up into four episodes that were divided at points where Megan

noticeably changed the causal net elements in her concept projection of state or her reasoning
about state. These changes were also accompanied by differences in her coordination of
program state. The narration and the coordination class analysis of each episode are presented
sequentially below.

Episode 1

Summary of Episode 1
As previously mentioned, the expression considered in this set of episodes was the

expression “A and B.” This episode began when I asked Megan, “Yeah how does ‘and’ even

www.manaraa.com

 The Coordination Class of State

 43

work? Do you know what I mean? Like let’s say if you were explaining it to somebody.” Megan’s
response to this question is shown below.

“Um, I’ve used ‘and’ just to like combine two things, so saying like ok if my shirt is red
and I’m wearing shoes then this is true, like I’m matching or whatever. (Interviewer:
Yeah) So then the ‘and’ would be used to combine two things.”

Megan then returned to the original issue of what the variables “A” and “B” could be.
She concluded that “they can’t be numbers” and then correctly summarized the behavior of the
“and” expression. “if ‘A’ is true and ‘B’ is true then the Boolean is true. I think. And then. Oh so if
only one of them is true then the whole thing is going to report false, because ‘and’ means both
of them.” She again returned to this discussion of what values the variables “A” and “B” could
be and brainstormed possibilities other than numbers.

After this digression, Megan went on to reiterate the cases in which the expression “A
and B” will return true or false. Although I interpret her tone and pacing as uncertain, her
reasoning was accurate for all cases. Table 1 shows the transcript for Megan’s unprompted
explanation of the various cases. The transcript is paired with the truth table for the expression
“A and B,” and the ordering of these quotations and cases corresponds with the original
ordering of her statements.

Table 1. Transcript of Megan’s description of the cases of the expression “A and B,” shown alongside the relevant line of
the “A and B” truth table.

Transcript
“it would only report true if both

are true.”
True True True

“If one of them was true and one
of them was false what would it
report? (Interviewer: Yeah, what

do you think?) It should report
false then.”

True False False

False True False

“if both are false then it also
would report false?

(Interviewer: What do you
think?)

I, I think it would report false.”

False False False

Analysis of Episode 1
Although Megan’s explanations of “and” being used to “combine two things” and that

“‘and’ means both” are far from what might be found in a computer science textbook, her
performance in describing the behavior of “and” in each of these cases demonstrated
appropriate coordination. I will identify some elements of her causal net from her concept
projections in this episode and I will discuss how these causal net elements supported her
inferences and coordination of state for each of the three cases she discussed.

www.manaraa.com

 The Coordination Class of State

 44

This excerpt began with Megan responding to the question of “how does ‘and’ even
work?” Her statement “if my shirt is red and I’m wearing shoes” makes no reference to a
computer science context and from this I assume she is using an everyday and not a technical
use of the word “and.” This statement, which used a non-computer science use of “and” and a
clothing context, suggests that she was building upon her everyday knowledge of “and.”
However, an individual’s everyday knowledge of “and” is likely varied. From her use of a non-
computer science version of “and” I assume that she is using her everyday knowledge of “and,”
but from this alone cannot identify particular elements in her causal net.

Megan’s initial explanation of “and” is focused on the way in which “and” works to
“combine two things.” The idea that “and” works to “combine” is a relevant element of
Megan’s causal net for identifying state. The word “combine” is not specific enough to be
correct or incorrect in the computer context and can be generously interpreted as a summary
of the fact that there are two inputs provided to “and,” which are in fact logically combined1. It
is ambiguous if this causal net element, which I will refer to as “and” works to combine, is used
in her concept projection for each of the cases in Table 1, but this causal net element is
consistent with her inferences in each of these cases.

After she described the behavior of “and” Megan justified her conclusions by saying
“because ‘and’ means both of them.” I do not anticipate that individuals will necessarily be able
to identify the rationale behind their reasoning (diSessa, 1993); however, here Megan makes an
explicit connection between her conclusions about “and” and this idea. I interpret her
statement “‘and’ means both of them” as indicating generally that both inputs to the “and”
must be true for it to return true. However it is unclear what properties Megan assumes “both
of them” have. In particular, it is not clear if Megan realizes that the inputs to the “and” are
Booleans and not unevaluated expressions.

This phrase, “‘and’ means both of them,” can serve as a rule for determining the
behavior of “and.” While one person might directly memorize the content of the truth table for
the function “and,” the idea that “‘and’ means both of them” can be used to derive the truth
table. This is a second element of her causal net that supported her determination of the
behavior of “and” and I will refer to it as “and” means both of them. I use Megan’s language to
describe this causal net element, but I do not assume the form of the knowledge is only
linguistic. What Megan appeared to achieve here was the determination of the behavior of
“and” through the application of this idea to three cases. That determination of the behavior of
“and,” if derived from the idea that “‘and’ means both of them” is not best described as
linguistic knowledge.

Megan’s statements shown in Table 1 are correct. They are also consistent with, and
possibly derived from, from her causal net element that “‘and’ means both of them.” Megan
appeared most confident when she claimed that “it would only report true if both are true.” Her
language of “means both of them” can be mapped to this case where she describes that “both

1 The language of “input” is not used by Megan, but for clarity is used in my explanation here and in the following

paragraph.

www.manaraa.com

 The Coordination Class of State

 45

are true” using the common language of “both.” The simplicity of this mapping may account for
her relative confidence in the behavior of “and” for this case. This may be a first example of
applying this causal net element to make an inference about the behavior of “and.”
Coordinating state for the remaining cases, she may have continued to apply her causal net
element that “and” means both of them, but in these later cases Megan appeared less
confident. Her confidence may relate to the relative difficulty of this mapping her causal net
element “and” means both of them to these later cases. Megan’s lack of confidence can be
seen in her interactions with me during the interview where she frequently phrased conclusions
in the form of a question. Megan seemed unsure of what the expression would return if
provided one true value and one false value; however, she identified the correct answer
without assistance from me: “If one of them was true and one of them was false what would it
report? (Interviewer: Yeah, what do you think?) It should report false then.” Considering the
final case, Megan stated that: “if both are false then it also would report false?” I responded by
saying “what do you think?” and Megan with some hesitation said “I, I think it would report
false.”

Despite some uncertainty throughout her explanation, I see no evidence of flaws in
Megan’s reasoning. From the perspective of coordination class theory, she used elements from
her causal net in concept projections to draw correct inferences about each of the cases. She
demonstrated appropriate coordination of program state in the context of “and.” In particular,
it appears that Megan could have used her causal net elements that “and” works to combine
and that “and” means both of them to make inferences about the behavior of “and.”

While she deliberated when identifying the output state of the “and,” she seemingly
without thought identified three relevant cases for “and” as two true values, two false values,
and one true and one false. I believe she was making inferences regarding the output states for
“and” using the two previously mentioned elements of her causal net. However, to produce
these cases she likely had a relevant causal net element, or elements, to more directly
determine the relevant cases. Unfortunately we do not have data regarding the possible
elements that supported this quick and accurate identification of cases, but according to
coordination class theory whatever knowledge supported this aspect of her reasoning would
count as an element of her concept projection for each of the cases.

While the causal net elements discussed thus far are likely derived from everyday
knowledge, her language of “report” is suggestive of a computer science context because the
term is used in the Scratch programming environment. It is unclear if she is conscious of
whether she is using computer science or everyday knowledge. I interpret Megan’s statements
as connecting her everyday knowledge that “and” works to combine and that “and” means both
of them to a computer science version of “and,” which “reports” a value. This bridging of
knowledge may account for Megan’s uncertainly, or her uncertainty may come in attempting to
apply a rather ambiguous rule such as “‘and’ means both of them” to predict the behavior of
“and” in the computer science world.

www.manaraa.com

 The Coordination Class of State

 46

My central claim in this episode is that Megan is reasoning about “and” in an everyday
usage rather than only a computer science usage. For example, the “and” appearing in “rice
and beans” is distinct from the computer science version of “and,” but could appropriately be
described as “combining two things” and is consistent with “‘and’ means both of them.” This
everyday “and” in “rice and beans” does not include the complexity of the computer science
“and” where it receives as input only Boolean values and does not have access to the larger
expressions that may be in an “and” expression. Her explanations of “and” do not suggest that
they are computer-science-specific explanations of “and,” but we can see how these causal net
elements that I identified could be used in a concept projection to produce coordination of
program state.

Her understanding of the context she created relating to “if wearing a red shirt” and “if
wearing red shoes,” is undeniably supported by out-of-domain knowledge. I believe that she is
able to cue her knowledge regarding conditionals in English and use it to understand the
expression “true and true.” In this context, she demonstrated proper coordination and
reasoned that “if ‘A’ is true and ‘B’ is true, then this would be true.”

Episode 2

Summary of Episode 2
Within less than a minute of the previous episode, Megan expressed a different set of

ideas regarding the expression “A and B.” In the interim time, Megan responded to my question
regarding whether or not she thought she could use Scratch to confirm the conclusions she had
made. A transcript of this digression is not provided. Megan’s statements that are the focus of
episode 2 are shown below. In this segment, Megan began by questioning her previous
reasoning.

“I don’t understand how this would work because if you just have true and true why
would that report true? Like shouldn’t, then again it could. (pause) Ok if we
set it, but if you’re setting it, so like the Boolean of true and false, I still don’t get like why
is that going to report anything.”

To try to understand her seemingly new set of ideas I asked her “can you draw that in
Scratch, what like, what you mean? The Boolean of true and false.” She spoke as she created
the first three rows of inscriptions shown on the left side of Figure 29, but this transcript is not
provided. The left side of Figure 29 shows the full representation she completed during the
following quote. The right side of Figure 29 shows a translated representation of the
expressions she had written, shown in the programing language Snap.

www.manaraa.com

 The Coordination Class of State

 47

Figure 29. The work written by Megan when considering behavior of the conditional “and” with arguments “A” and “B.”

She made the following conclusions:

“Then you would basically have like the Boolean of true and false (writes “true and
false”). But that’s not going to report anything because why would it report something
that, is this true? Well is true and false true? Not really. And is, it’s not false either; I
don’t think that could be a possible input. (Interviewer: And what part makes it
impossible?) Just that it doesn’t make sense, to have like even if you have both of them
true, it’s just why would it be true and true? (Writes “true and true”) True and true make
what? Like, that’s what I don’t get. Why would it make true?”

Megan’s next statements provided insight into her different inferences in episodes 1
and 2. Megan distinguished two contexts of consideration: “out here in this world” versus “the
computer” and determined that different rules applied in each context.

“I mean it makes sense like out here in this world for it to be true just because it’s true
and true, but I don’t see why the computer would make it, this equal true.”

Analysis of Episode 2
In episode 1 Megan demonstrated no flaws in reasoning about the expression “A and

B.” In episode 2 she did not demonstrate the same competence and questioned her previous
conclusions regarding the behavior of the conditional “and.” Megan’s final statements of this
episode provided an explanation for her change in reasoning. Essentially she said that her
everyday assumptions about “and” were not necessarily applicable to predicting what the
computer would do.

Regarding the expression “true and false,” Megan said that “I don’t think that could be a
possible input.” This may relate to a lack of knowledge that an “and” is provided two Boolean
values and not two expressions. Megan may or may not have this computer-science-specific
knowledge in her causal net, but she does not apply it in this context.

She confidently claimed that “true and true” “makes sense like out here in this world.”
She appears to find “and” “out here in this world” intuitive and barely requiring an explanation.

www.manaraa.com

 The Coordination Class of State

 48

To justify why “true and true” would be true “in this world,” she provides only a minimal
explanation. She said “I mean it makes sense like out here in this world for it to be true just
because it’s true and true,” which amounts to little more than saying “just because.”

This shows that Megan recognized that we can think about “and” in an everyday context
or a computer context. Her belief that there may be different behaviors in these two contexts is
accurate. This is a primary causal net element that dictated important aspects of her reasoning
in this episode, which I refer to as this world and the computer have different rules. Megan does
not make use of her causal net elements that “and” works to combine and that “and” means
both of them.

From episode 1 we have evidence that she had causal net elements to generate
appropriate coordination, but here she is not successful at identifying the behavior of “and.” In
fact, this is an issue of span because she does not believe her knowledge to be relevant to this
context. It is not an external change in context, but Megan considers the context in a new way,
which prevents her from drawing inferences and creating a concept projection for any of the
cases.

Recall that a concept projection is composed of all causal net elements that guide
extractions and that are used to generate an inferential chain to identify the focal information
of that coordination class. Megan uses the causal net element that this world and the computer
have different rules. According to coordination class theory, Megan does not generate an
inferential chain in this context because this causal net element causes Megan to believe her
knowledge is not relevant. Unlike the other causal net elements I described, this does not get
used within an inferential chain, nor does it guide an extraction. It is part of Megan’s causal net
that is activated in this context, but there is no inferential chain and therefore no concept
projection for this to be a part of.

Megan does not continue to use the computer science laden word “report” here, which
I identified as playing a role of bridging her everyday and computer science knowledge. Instead
of using the technical word “report,” Megan used the word “make.” She said “True and true
make what? Like, that’s what I don’t get. Why would it make true?” In episode 1 Megan used
the technical language of report when using primarily everyday knowledge of “and.” However,
in episode 2 when she explicitly discussed the computer context, as in the statement “I don’t
see why the computer world make it, this equal true,” she used the everyday and non-technical
language of “make.”

It is unclear what caused Megan’s shift in reasoning and her new attention to the
context of “and.” My prompt to “draw that in Scratch” brought the computer science context
to her attention, but this prompt was in response to her change in reasoning and cannot be
seen as the cause of this change. While we can rule out this prompt as the cause of the change
in her reasoning, a similar mechanism might have played a role. During the interview, a copy of
her test, with the expression “A and B” was visible. While there are no gestures that showed
her attention on the test, seeing the test could have cued her attention to the computer
science context and provided a greater attention to context in general.

www.manaraa.com

 The Coordination Class of State

 49

The primary observation in this episode is that Megan engaged in a change of reasoning
based upon her causal net element that this world and the computer have different rules. This
change in what causal elements were used caused a lack of span because Megan believed her
knowledge of “and” was not relevant in the context of the computer.

Episode 3

Summary of Episode 3
Without support from me, Megan created the representation shown in Figure 30 and

then concluded that “true and true” would report true. The transcript during her creation of
this representation is not the focus of the analysis, but is provided below.

“But if like you have um like I was saying like ok ‘A’ set ‘A’ to be, set ‘A’ to be true if, ok
then if block would be above it, if um. Like if wearing red shirt then set ‘A’ to be true?
And then if wearing red shoes, then set ‘B’ to be true and then it would be else false for
both of them.”

Functionally the transcript above narrates the creation of the representation shown in
Figure 30. Megan ended this narration with the statement “and then it would be else false for
both of them,” which does not describe text in the representation. I interpret this statement as
indicating that both “if” cases would have an “else” case to set “A” and “B,” respectively, to
false.

If wearing red shirt

 set a = true

If wearing red shoes

 set b = true

Figure 30. A secondary context created by Megan to consider the case where “A” and “B” are true.

Immediately after she constructed the representation shown in Figure 30 she drew the
following conclusions: 2

“But um so then you could have ‘A’ and ‘B.’ Oh yeah. Yeah. So then [‘A and B’] could be
true and so then if wearing a red shirt then ‘A’ is true and then if wearing red shoes then

2 In the following quotations, bold denotes verbal emphasis.

www.manaraa.com

 The Coordination Class of State

 50

‘B’ is true. So that would mean that if ‘A’ is true and ‘B’ is true, then this would be true //
Oh so you can have true and true.”

I probed for further explanation by asking “Ok why does that mean you can have true
and true?” The transcript below shows Megan’s response to this question, which focused on
how “and” includes an implicit “if” component.

“Because um you can like have whatever variables so if you’re setting it so basically if
this, so this block is saying if this is true and this is true (points to Figure 30), then report
the whole thing as true. (Interviewer: Oh ok) But then if this is true and this is false
(points to “A” and “B” in Figure 30), then that means both of them aren’t like true so
then the whole thing would be false.”

Next, Megan responded to my question: “How is what you’re saying now different than
how you were thinking about it before?”

“before I was just putting in true and false like setting them to be true and setting them
to be false. So like okay true and true make what? But now I realize if you do: If this is
true and this is true, like that’s what it means. Not just like true and true, but if it’s true
and if it’s false. So I think just started thinking of the more if”

Megan’s response focused on how she “started thinking of the more if” rather than just
“and.” During the interview it was unclear to me if Megan realized that the expression we were
considering did not include an “if.” I mentioned that the “and” expression Megan had written
was not accompanied by an “if.” I said: “just this block by itself (referring to the block “A and B”)
doesn’t have an ‘if’, does that make it not work?” While Megan’s first response was a dejected
sounding “Oh,” she responded “Um actually I think it could still work… it’s still saying like if ‘A’ is
true and ‘B’ is false. There’s no ‘if’ though, but I think it works.”

Megan continued by saying “I think actually in our class they should have explained
more how these blocks like work and what the input and output is because I still am confused
about it. Like when we use it and right now. (Interviewer: Yeah) But I think it’s starting to make
sense so you can have it be true and false.”

Analysis of Episode 3
At the beginning of episode 3 Megan wrote pseudocode for a real-world use of

conditionals in which the predicate tests the state of an individual’s clothing and conditionally
sets the variables “A” and “B.” From this context, Megan was then able to reason that “A and
B” could return true and she again generated appropriate coordination of program state for the
case of two true values. Her causal net element that this world and the computer have different
rules dominated her reasoning in episode 2. In virtue of the bridge she created between this
world and the computer, this causal net element is given less priority in her reasoning in
episode 3. Unlike episode 2, in episode 3 Megan generated inferential chains to identify the
behavior of “and” for various cases. This analysis develops a hypothesis regarding the way in
which Megan connected her everyday knowledge and computer science knowledge and how

www.manaraa.com

 The Coordination Class of State

 51

her conclusions were supported by bridging her structural and functional knowledge of “and”
by focusing on “if.”

In episodes 1 and 3 Megan used non-programming specific knowledge to make
inferences about state. It is likely that in episode 1 she was unconscious of this out-of-domain
knowledge use, but in episode 3 was able to explicitly connect her programming and everyday
linguistic knowledge of “and.” She may have developed the causal net element that this world
and the computer work the same way for “and” by observing that it was possible to represent
her everyday example about clothing in Scratch. In episode 2, Megan considered the
decontextualized Scratch expressions in Figure 29 without being able to realize the relevance of
her everyday knowledge. In episode 3, she demonstrated alignment of state when she
connected the decontextualized Scratch expressions to a representation of her real world
scenario in Scratch. This may have served to connect her everyday and computer science
knowledge or, perhaps more importantly, it made the idea that this world and the computer
work the same way for “and” more plausible. This connection or this plausibility functioned to
enable Megan to use her correct intuition about “and” to predict the behavior of “and” in a
computer science context.

I believe that through representing in Scratch psuedocode her real-world example of
“and,” which was about clothing, she connected her understanding of “and” from “this world”
with “the computer.” However, the mechanism of this connection and the specific knowledge
that Megan bridged from “this world” to “the computer” is not obvious. To explore these
issues, I examine the role played by Megan’s everyday and computer science knowledge of “if.”

 In Megan’s explanations of her insight, she focused heavily on the role of the “if” in her
reasoning about the expression “A and B.” Each of the times that Megan used “and” to describe
her real-world example she also used “if.” Megan appears to not only use her everyday
knowledge of “and,” but also her everyday knowledge of “if.” Megan re-explained “and” by
using “if” to separate possibilities for what “and” would “report.”

“This block is saying if this is true and this is true, then report the whole thing as true…
But then if this is true and this is false then that means both of them aren’t like true so
then the whole thing would be false.”

 The “if” she used here is not the traditional conditional of “if” used in Scratch. This
Scratch “if” takes only a single value and based upon that value determines the next line of
code to be executed. Contrary to Megan’s description above, the Scratch “if” is not directly
involved in the reporting of any value. The Scratch “if” is fundamentally different than the role
“if” plays in Megan’s description of “and.” Megan says that the expression “true and true”
actually “means” “[i]f this is true and this is true… Not just like true and true, but if it’s true and
if it’s false.” In this quotation she contrasts the expression “true and true,” which was stated
without an “if,” with a description that uses the “if” to include the idea that decision is made
within or by the “and.” Megan’s description of “and” appears to contain an “if” and I will refer
to this causal net element “and” contains an “if.”

www.manaraa.com

 The Coordination Class of State

 52

It is possible that this element that “and” contains an “if” helps bridge her functional
and structural knowledge of “and.” Students learn particular ways of accomplishing tasks; for
example Megan might have developed functional knowledge for using “and” within an “if”
expression. A common structure for an “and” expression would be “if (x = = y and x = = z).” This
functional knowledge to create these types of expressions could serve Megan when reasoning
about the behavior of “and” within an “if,” but might not be applicable to reasoning about the
behavior of “and” if the “if” is not present or if the two elements in the “and” expression are
Boolean values rather than tests. In the methods section I discussed the common incorrect
structural assumption that “if” operates on an expression rather than the Boolean output of an
expression. If the conditional expression used in the “if” includes an “and” a student may
assume that the “if” is responsible for executing the two tests or possibly responsible for
executing the “and” expression. Megan’s explanation can be seen as patching this structural
model by embedding the assumed responsibility of “if” as an implicit “if” in the “and.” My
hypothesis is that she sees “and” as requiring a test and by attributing testing to “if” and
thinking about “and” as containing an implicit “if” can satisfy her requirement of “and” as
containing a test.

Here she seems to be reasoning about the “and” block as if it contained an implicit “if”
block. I assume that this causal net element built upon Megan’s knowledge of “if,” from both
inside and outside of the computer science context. During the interview it was not clear to me
whether Megan understood that the “and” could exist outside of an “if.” Megan eventually
acknowledged that the “if” is not necessary, but appears to continue to reason based upon the
causal net element that “and” contains an “if.” She said that “it’s still saying like if ‘A’ is true and
‘B’ is false.” I claim that she builds upon some everyday knowledge of “if,” but unfortunately
we do not have more resolution regarding the nature of Megan’s everyday knowledge of “if.”

Episode 4

Summary of Episode 4
Megan next continued with a previous line of discussion regarding whether or not the

variable “A” could be a number. She concluded “I don’t think it makes sense if ‘A’ is a number”
and set out to create an example to show that “A” cannot be a number. She constructed the
expression “5 and true” shown in Figure 323.

Figure 31. A context created by Megan to consider whether the variable “A” could be a number.

3 This can be constructed in Snap, a variant of Scratch, but is a syntactically invalid expression because providing 5

as an argument to the “and” function would create an error.

www.manaraa.com

 The Coordination Class of State

 53

Although she set out to show that it was invalid for “A” to be a number, as Megan talked
through this expression she decided that if you had “earlier” set the value of “A” to be 5 that
this would return true. Megan said “you would have like 5 and true? Oh that does make sense, if
you set ‘A’ to be 5 earlier, or so like you don’t know if it is but like if ‘A’ is 5 and ‘B’ is true, then
this whole thing is true.”

I had significant difficulty in understanding Megan’s reasoning and after a few
inconclusive questions and answers, I asked “why is ‘5 and true’ not false?” Megan responded
as shown below and added to Figure 32 to create the diagrams in Figure 32 and Figure 33.

 “it’s only if you have like set ‘A’ equals 5 (generates Figure 32). Or like you have an
index and ‘A’ becomes 5. If ‘A’ was like 4 (generates Figure 33) then this part (points to
the ‘5’) would be false and this part (points to the ‘true’) would be true and then the
whole thing would be false.”

Figure 32. Modified version of Figure 31 to include an assignment to the variable “A.”

Figure 33. Modified version of Figure 32 that sets the variable “A” to 4 instead of 5.

I asked Megan to explain “why if ‘A’ would be 4, then it would be false?” Megan at this
point recognized her error as shown in the following transcript. “Because if um, because this is
saying if ‘A’ is 5, oh wait it’s not saying if ‘A’ is 5, it’s saying just 5 … so if oh wait. No that
doesn’t work.” Upon closer investigation Megan realized that “it’s not saying if ‘A’ is 5” and she
appeared to correctly interpret this expression as invalid. The ellipses in the quotation above
indicate that words were removed from the quotation. These words, shown in the following
quotation seem to include only fragments of ideas, that are difficult to follow, but clearly show
that Megan’s transition from the conclusion from “it’s saying just 5” to “No that doesn’t work”
was not immediate. The phrases that she uttered at this time are as follows, “Oh could you
have, oh well actually in that it has just ‘A’ in here. So if you have ‘A’ in here,”

www.manaraa.com

 The Coordination Class of State

 54

Analysis of Episode 4
Megan’s statements implied that “5 and true” tests the value of the variable “A,” but no

test exists in this expression to check the value of the variable “A.” The primary question in this
analysis is why did Megan originally see the expression “5 and true” as testing whether the
value of the variable “A” was 5.

From Megan’s performance on other problems I have no reason to believe that she saw
the symbols she had written in any other way than they appear; I believe she competently
extracts the text “5 and true.” However, to interpret that extraction she used elements from
her causal net, which explains how her interpretation could differ from an expert’s
interpretation. In particular, I believe her reasoning was influenced by her causal net element
that “and” contains an “if” and her strong connection between “and” and “=.”

In episode 2, Megan had difficulty seeing the “and” as reporting a value, but in episode
3 determined that it could. The relevant observation from episode 3 is that Megan emphasized
the way in which the “and” included the testing aspect of the “if.” Megan may have aspects of a
structural model that “and” involves testing. In episode 3, she saw “and” as including an implicit
“if” and similarly in episode 4 she may see “and” as including an implicit “=.” This process of
attributing implicit behavior to “and” is consistent with incomplete structural knowledge. A
correct structural model of state would imply that the “and” does not have access to test the
value of the variable “A” and an implicit test does not take place.

Megan had a strong connection between “and” and “=,” which I believe influenced her
reasoning in episode 4. At one point earlier in the interview Megan flipped to talking about the
“and” as “=.” This flip happened when she discussed what “and” would report if provided two
false values, which is the only case that differs between “=” and “and.” She quickly caught
herself, but momentarily entertained the idea of the “and” being, or being replaced by, an
equals function. She says “I think it would report false, but then if this equals then it would
report true, but it’s not equals.” This strong connection or even perhaps reliance on “=” may
have occurred throughout the interview.

 The causal net entity of “and” means both of them does not specify that “both of them”
need to be true. Another interpretation is that “both of them” must be the same. This
interpretation, which is equivalent to “=,” correctly predicts the behavior of “and” for all cases
but the case of two false values. “False and false” reports false, but “false = false” reports true.

 I conclude that Megan sometimes used the resource I will refer to as “and” tests. This
aligns with thinking about an “and” as like an “=.” It is possible that Megan used this causal net
element when she concluded that “5 and true” reports true and that “4 and true” reports false.
Although Megan later recanted these claims, she appears to be guided by the belief that an
“and” tests something about the current state, which can be partially explained by a strong
connection to “=.”

www.manaraa.com

 The Coordination Class of State

 55

Discussion
In the focal episodes, Megan was reasoning about the behavior of “if” and “and,” but

from a computer science perspective the relevant “behavior” that she considered was the
possible state of the variables “A” and “B,” the input and output states of the conditional “and,”
and the input and output states of “if.” The analyses of these episodes described the
interaction of elements of Megan’s causal net, which may help understand the role of everyday
knowledge in reasoning about computer program state.

In episode 1 Megan was able to articulate the behavior of the “and” function for all
possible initial states. While Megan did not appear confident in these facts, she demonstrated
appropriate coordination and appeared to have an understanding of the expression “A and B.”
In this episode she appeared to generate appropriate coordination through the causal net
elements of “and” means both of them and “and” works to combine, as well as knowledge
about the relevant sets of inputs to “and.” Episode 1 shows a real-world example of “and,” and
other causal net elements of “and,” which are rooted in Megan’s everyday knowledge.

In episode 2 she rejected that the same expression “A and B” would “report anything.”
This conclusion prevented her from coordinating state and she appeared to use a causal net
element of this world and the computer have different rules. Episode 2 shows an example of a
lack of span and shows Megan’s sensitivity to perceived context as relating to “this world” or
“the computer.”

In episode 3 she created in Scratch a representation of an everyday example about
clothing. From this bridging of her computer science and everyday knowledge, Megan was
again able to demonstrate appropriate coordination and extended the span of her coordination
class of state. In addition to the causal net elements identified in episode 1, Megan appeared to
build upon the causal net elements of this world and the computer work the same way for
“and” and “and” contains an “if.” This is an example of a student using intuitive knowledge
productively to reason about a computer science context. However, throughout this
progression Megan did not appear to recognize an important property about “if” and “and,”
which is that they both operate only on Boolean values and not expressions.

 In episode 4 Megan temporarily believed the expression “5 and true” to be testing the
value of the variable “A.” Eventually Megan caught her mistake, but before this she appeared
to be reasoning based upon the causal net elements of “and” contains an “if” and “and” tests,
as well as a strong connection between her knowledge of “and” and “=.”

My analysis extends coordination class theory to the domain of computer science for
the first time by using coordination class theory to analyze a student’s reasoning about the
concept of state in a computer science context. This moves computer science education
forward by providing an initial theory describing the moment-by-moment interaction of
knowledge. This work advances coordination class theory by evaluating the theory outside of
physics and mathematics

www.manaraa.com

 The Coordination Class of State

 56

Relationship to Previous Coordination Class Research
 In the following section I will draw out some similarities and differences between this
work and previous coordination class analyses.

diSessa and Sherin (1998)
The article by diSessa and Sherin (1998) introduced the term coordination class and

diSessa and Sherin (1998) used examples from an undergraduate student taking an
introductory physics course. The third empirical example in diSessa & Sherin (1998) focused on
a student’s coordination class of acceleration and coordination class of force. She correctly
identified that a book pushed by the interviewer across the table was not accelerating. In this
way she correctly coordinated acceleration. However, she demonstrated incorrect coordination
of forces. Instead of using the equation relating acceleration and forces from her causal net,
F=ma, she uses intuitive knowledge that generates a non-normative result in this context. The
intuitive knowledge she used was that “contact conveys motion,” which diSessa (1993)
identified as a p-prim. This intuitive knowledge and her confidence in the lack of acceleration of
the book leads her to conclude that the equation F=ma does not apply in this context. She said
“I guess you can just say that, you know, those darn equations aren’t applicable to every single
thing. They’re not always true. You can’t live by them… I just thought that F=ma was one of
those that was universal.” This student’s rejection of the relevance of the equation F=ma to this
situation can be seen as parallel to Megan’s rejecting that “true and true” would not report
anything. The student in diSessa & Sherin (1998) used the idea that “contact conveys motion”
instead of the equation “F=ma.” Megan rejected that “true and true” would report anything
based upon the idea that this world and the computer have different rules instead of her
knowledge that “‘and’ means both of them” and that “and” combines. Both students cued
relevant knowledge that could have been productively applied, but reject that this knowledge is
relevant in this context. The differences between these two cases are numerous, but these few
commonalities are remarkable to see across domains.

 diSessa and Sherin (1998) identify the ways in which their participant was justified in
being careful about the applicability of equations. diSessa and Sherin note that F=ma does in
fact have limitations in terms of applicability and her sensitivity that it may not be universally
applicable, although it does apply to the context she discusses and is part of a generally
productive attitude for reasoning about physics. Similarly, Megan rejects that her everyday
knowledge of “and” is relevant to the computer science context. She too identifies that there
may be different contexts of applicability and questions why “and” in the real world and
computer would behave in the same way.

Parnafes (2007)
 This analysis in this chapter diverges from previous coordination class analysis by
focusing on Megan’s coordination class of state independent of what type of information
believed she was determining. This divergence can be seen most clearly through a comparison
to the analysis of Parnafes (2007). Parnafes (2007) discussed students’ understanding of the
intuitive coordination class of fastness. She discussed how students originally used this
coordination class to analyze oscillations when in fact they should be using the coordination

www.manaraa.com

 The Coordination Class of State

 57

classes of frequency and velocity. A heuristic of selecting an appropriate coordination class that
has guided previous coordination class analyses (A. A. diSessa, personal communication, April 3,
2012) is that the relevant coordination class is the coordination class that the participant
believes themselves to be using. This governed the development of the construct of intuitive
coordination classes (Parnafes, 2007; A. A. diSessa, personal communication, April 3, 2012)
where students’ believed that they were identifying the relative “fastness” of the oscillator. I
believe that this artificially emphasizes a transition from the intuitive coordination class to the
correct coordination classes of velocity and frequency. Many of the knowledge elements that
the participants used across the episodes presented were likely the same or quite similar. I do
not claim that Megan was aware that she was identifying state during these episodes. I
deemphasize what coordination class the individual believes themselves to be using for the
purpose of emphasizing the commonality between the tasks and the ways in which Megan
bridges her everyday knowledge to reason about computer science.

Levrini & diSessa (2008)
Like the students in Levrini & diSessa (2008), Megan demonstrated in episode 2 that

students can reason about the relevance of various knowledge elements regarding state;
however, I am not implying that this process of articulate alignment will be common or
necessarily viable pedagogically. While other conceptual change research (e.g., Strike & Posner,
1992) prescribes pedagogical techniques to confront inconsistency in students’ understanding, I
do not offer sufficient evidence to suggest that this would be a generally useful strategy. I
expect that the majority of students engage unconsciously in their application of relevant
knowledge, which might make the technique ineffective. As a second point, this form of
confrontation may engender in students a lack of trust for their ideas (Smith, diSessa, &
Roschelle, 1993), many of which could serve as fertile grounds for the development of
coordination.

Pedagogical Implications
Although the primary focus of this paper is the development and refinement of theory

regarding computer programming knowledge, I highlight some of the pedagogical implications
from my work.

A first pedagogical implication of this works is to join other researchers (diSessa, 1986;
du Boulay, O’Shea, & Monk, 1989; du Boulay, 1989; Cooper, Dann, & Pausch, 2000; Ben-Ari,
2001; Sajaniemi & Kuittinen, 2005; Shinners-Kennedy, 2008) who focus attention on state as an
important concept in computer science education. The case presented in this chapter
demonstrates the complexity of this concept in the computer science context and showed
interactions between a student’s structural and functional knowledge (diSessa, 1986) and
everyday and computer-science-specific knowledge. This complexity suggests that a
pedagogical focus on state might be necessary or at least productive for students. This analysis
provides an empirical basis for the conclusions of Shinners-Kennedy (2008) that individuals
have experience with state that may be relevant to computer science contexts. In episode 3
Megan achieved the type of transfer of her everyday knowledge to the computer science
context that we hope to achieve in instructional contexts.

www.manaraa.com

 The Coordination Class of State

 58

A second pedagogical implication of this work is that coordination of knowledge at one
point in time does not guarantee coordination of the same knowledge at another point in time.
Coordination class theory argues that knowledge within a coordination class is made up of a
variety of conceptual elements. With improved coordination students access these elements
more reliably to determine the relevant focal information. A key component of the theory is
that errors in performance are not necessarily evidence of a lack of knowledge. Frequently the
individual could be described as “having” relevant knowledge that they do not use within a
context. In the dynamic process of problem solving, students make conscious and unconscious
decisions about what knowledge they apply to a problem. A novice may have the relevant
knowledge, but may not, for some reason, use the necessary knowledge in concert to correctly
identify the focal information of the coordination class. The case presented here shows
examples where Megan originally used intuitive knowledge, but had difficulty applying that
knowledge in a second context. She was eventually able to create a bridge to be able to use this
knowledge in both cases.

A third pedagogical implication of this work is that tracking program state requires an extensive
set of facts regarding the programming language as well as expertise in utilizing these facts in
concert. The case study showed that the central challenge was the coordination of everyday
and computer science knowledge and not, as others might expect, simply the acquisition of
knowledge regarding the programming language. I hypothesize that errors where students have
the requisite facts necessary to have prevented or detected their errors are frequently
interpreted by students and instructors as unproblematic mistakes that do not require
remediation. For example, Megan’s reasoning about the expression “5 and true” as testing the
value of the variable “A” can be seen as only a simple mistake. The coordination class analysis
provides a focus on the coordination of relevant knowledge and suggests that these incidences
are not simply mistakes and are best categorized, more particularly, as evidence of a lack of
span or alignment.

www.manaraa.com

 Partial Descriptions of State Change

 59

PARTIAL DESCRIPTIONS OF STATE CHANGE
The previous chapter tracked the moment-by-moment use of knowledge when an

individual used the coordination class of state to reason about the behavior of the conditional
“and.” In this chapter, I identify a particular type of inference that an individual can make when
reasoning about state. The emphasis in this analysis is not on the dynamics of how these
inferences are linked to create an inferential chain, but instead on developing a model of a
particular type of link that can exist in a concept projection of state.

This chapter is focused on students’ statements that summarize patterns of state and
state change as a type of inference than an individual can make when reasoning about state.
Researchers have reported that students have difficulty providing a summary of code that
focuses on the overall behavior of the code rather than the line-by-line details (Hoadley, Linn,
Mann, & Clancy, 1996; Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez,
Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009). Researchers have speculated
that the ability to produce a summary of code develops after the ability to trace code
(Venables, Tan, & Lister, 2009).

Despite the reported difficulty, I found that students frequently made statements that
summarized aspects of state when answering a question about how to avoid an infinite loop in
a recursive function. Surprisingly, many of these students had difficulty on a previous problem
that required tracing the same recursive function. This pattern of students’ competence
provides the opportunity to investigate a context in which students were successful at
generating a summary of code that does not focus on the line-by-line details and the
opportunity to schematize this type of inference and how it relates to the process of tracking
program state. The generalization that students have difficulty providing a summary of code
requires additional refinement to provide contextual specification.

The data from this study were taken from seventeen clinical interviews with college
students who were enrolled in an introductory programming course at the University of
California, Berkeley. During the approximately hour-long interviews, participants talked aloud
while they solved computer programming problems.

The problems used in the interviews were translated versions of the problems identified
by Reges (2008) as the five questions that were most highly correlated with success on the
1988 Advanced Placement Computer Science (APCS) exam. The selection of these questions
aligned the study’s interview with content from an international introductory computer
programming curriculum. Another benefit of selecting questions most highly correlated with
success on the exam is that these questions may contain a set of competencies that are
important for introductory programming.

In the following analysis, I focus on one such question, which asked students to identify
the conditions that would not create an infinite loop in a recursive function. This question,
which I call the “infinite-loop” question, followed a question that asked students to find the

www.manaraa.com

 Partial Descriptions of State Change

 60

output of the same recursive function for a particular input, which I call the “tracing question.”
The tracing question and the infinite-loop question are shown in Figure 34 and Figure 35 and
are described in detail in the methods section of this dissertation. The tracing question was not
one of the questions most highly correlated with success on the exam, but was included in the
interview because it was the first part of a two-part question, where the second part was one of
the questions most highly correlated with success. During the interview, participants solved
these problems in the same order as they appeared on the APCS exam and participants’
responses to this pair of questions form the data corpus of the study.

(define (whatIsIt x n)

 (if (= n 1)

 x

 (* x (whatIsIt x (- n 1)))))

What value is returned by (whatIsIt 4 4)?
A) 8 B) 16 C) 24 D) 64 E) 256
Figure 34. The “tracing question”: a translation of a question from the 1988 APCS exam.

Which of the following is a necessary and sufficient condition for the function WhatIsIt to

return a value if it is assumed that the values of n and x are small in magnitude and are both
whole numbers?
A) n > 0

B) n = 0

C) n > 0 and x > 0

D) x ≤ n and n > 0

E) n ≤ x and n > 0
Figure 35. The “infinite-loop question”: a replication of a question from the 1988 APCS exam.

On the infinite-loop question, participants demonstrated accurate reasoning and made
statements about the patterns of state change. This contrasted with many participants’
performance on the tracing question, where they were not successful tracking state.

To introduce the nature of participants’ insights on the infinite-loop question, I provide
a case study of one participant’s solution to the two focal questions. This case study of the
student Rick4 (participant identifier: Yellow_BL/Purple_BR) shows that the context of the
infinite-loop question induced a specific insight that appeared to be missing in his solution to
the tracing question and this missing insight was likely the reason for his difficulty. I selected
this case because it clearly demonstrated difficulty on the tracing question and insights about
state change on the infinite-loop question.

The primary contributions of this chapter are operationalizing this type of state
summary, which I call a “partial description of state change” and demonstrating the existence

4 All names are pseudonyms

www.manaraa.com

 Partial Descriptions of State Change

 61

of this competence within a particular context. The case study provides two examples of a
partial description of state change. After orienting the reader to the type of inferences
observed in the data, I delineate and describe two types of partial descriptions of state change.
This is followed by a collection of quotations from across the data corpus, which serves
primarily as exemplars to help illustrate the range of statements that would be classified as
partial descriptions of state change.

A later chapter includes a discussion of some pedagogical implications for teaching
recursion. There I discuss the possibilities of encouraging students to reason about the cases in
which a function call results in an infinite loop before attempting to trace the same function.

Case Study
When creating content logs for the data, I noticed that the participants occasionally had

greater insight regarding the behavior of the WhatIsIt function when answering the infinite-

loop question than when answering the tracing question. The following case study
demonstrates this pattern. This case is used to make the claim that the insights on the infinite-
loop question are relevant to the coordination of state before introducing a classification
system for these insights. The analysis of this case includes a narration and interpretation of the
participant’s solution to both the tracing question and the infinite-loop question. The data from
this participant is then used to map the ways in which his insights on the infinite-loop question
might have been helpful to him when solving the tracing question.

For the participant Rick, the infinite-loop question appeared to elicit insights about the
patterns of state change that were not accessible to him when he solved the tracing problem.
As a brief overview, he mentioned accurate patterns of state change for the variables x and n,
but his insufficient tracking of these same variables was the likely cause of his incorrect solution
to the tracing problem. The section following the case study seeks to schematize more
generally the nature of his insights.

Rick began the tracing question by explaining that he had recently learned recursion and
then read the question aloud. After a brief pause, I asked Rick “What are you thinking?” He
responded with the statements below and generated the first line of handwritten inscriptions
in Figure 36, “4 3 2 1.”

“Oh okay – so you’re multiplying x, which is the first number here (writes 4) by um, 3
(writes 3) and then 2 (writes 2) and then 1 (writes 1).”

Figure 36. Notes made by Yellow_BL when solving the tracing problem

www.manaraa.com

 Partial Descriptions of State Change

 62

Without speaking, Rick generated the second line of handwritten inscriptions in Figure
36. Although I do not have evidence of his reasoning, he wrote 12, the partial product of 4 and
3, and 2, the partial product of 2 and 1. His final answer was 24 (or 4x3x2x1), instead of the
correct answer, 256 (or 4x4x4x4).

The variable that gets multiplied by the function is, as Rick said, x. However, x is always
4. Rick’s reasoning was consistent with a function that continually multiplies the variable n,
because the value of n begins with a value of 4 and decreased by 1 in each recursive call. He
may have incorrectly believed that the value of n gets multiplied by the function or he may
have incorrectly believed that the value of x was changing. Given his statement “so you’re
multiplying x,” the latter seems more plausible, but ultimately the source of his mistake is
unknown. Instead it might be that when tracing the function he was not paying close enough
attention to how the variables change and how the variables are used. When he traced through
the function he did not mention the individual function calls, which may be a symptom of his
lack of care in tracing the values of the variables x and n and may have prevented his
coordination of state. A formal coordination class analysis is not conducted here, but it may be
helpful for the reader to note that here Rick demonstrated a lack of alignment in his
coordination class of state. Rick applied his partial coordination class of state to determine the
return value of the function, but his determination of the state was inaccurate. This alone
classifies as a lack of alignment, but in his concept projection of state his partial descriptions of
state were not consistent with his written representations, which is further evidence of a lack of
alignment.

Figure 37 shows one set of calculations that can be inferred from Rick’s statements.
Given the fact that he answers the question incorrectly, it is ambiguous whether he incorrectly
tracked the values provided to the function or incorrectly tracked how those values were used
in the function. This diagram includes the assumption that Rick correctly tracked the values of
the variables provided to each recursive call. While he identifies himself as having “just learned”
recursion, I infer from his solution that he correctly combines pending calculations from each
level of the recursive calls, which has been identified as a difficult aspect of tracing recursive
functions (e.g., Kahney, 1989).

www.manaraa.com

 Partial Descriptions of State Change

 63

Figure 37. Incorrect recursive tracing that was inferred from statements made by Rick (YellowBL/PurpleBR) when
tracing a call to (WhatIsIt 4 4)

I expect the reader might question the severity of the mistake made by Rick. He may
have just confused the values of the variables x and n. This may be a completely accurate
description, but is at best an incomplete explanation. When solving other problems he did not
appear to confuse the values of any variables. It appears from the data that this confusion is
context sensitive. This simple confusion may be evidence of a more systematic weakness in
tracing recursive functions. This relates to the larger theme in the work of the coordination
class of state. An expert’s coordination class of state includes both the ability to correctly track
state and the knowledge that precise tracking of variables, such as with a representation, is
necessary to correctly track state.

Next, on the infinite-loop question, Rick’s reasoning included statements about the
pattern of state change between recursive function calls. After reading the question aloud to
himself, Rick quickly determined the correct answer. He said:

“So here, uh the base case is n equals one and obviously you’re subtract, you end up
subtracting here, so it can’t be less. It can’t have anything where n is less than one. So n
has to be greater than zero, so that gets rid of that (crosses off answer option B) and,
(pause) so both are whole numbers so that means that um x does not it doesn’t matter
what x is here, so n has to be greater than zero (circles A).”

Rick went on to elaborate on his answer. Most notably he stated that “you end up just
multiplying whatever x is by this recursive call” and also that “you’re not changing x.”

Rick’s statements about the patterns of state change between recursive function calls
contradicted his calculation on the tracing question. In that problem, it appeared that he
assumed either that n was being multiplied or that x was changing. Both of these hypotheses
seem refuted by his statements on the infinite-loop question. However, we can form a different
interpretation of this seemingly inconsistent behavior by taking a perspective from
coordination class theory. With this perspective we can map the two questions to different
contexts that in turn elicited different knowledge.

Rick did not notice the contradiction of his statements on the infinite-loop question and
his solution to the tracing problem. However, his insight could have served as a check to his
line-by-line tracing of the code. Rick’s knowledge that supported the inference that the value of
the variable x is not changing could have been fruitfully applied when tracing through the same
function. It may be that competent individuals make some mistakes like Rick’s, but that they
are more deliberate about checking their solution and more capable of checking their solution
with another method.

From the Knowledge in Pieces perspective, it is not surprising that students built upon
different knowledge on two similar problems. The tracing question appeared to focus Rick on
specific values of x and n and the infinite-loop question appeared to focus Rick on these more
general patterns of state change.

www.manaraa.com

 Partial Descriptions of State Change

 64

It was not relevant to describe how the variable x changes to justify his solution to the
infinite-loop question, but his descriptions of how x changes seemed to flow naturally within
the interview. The think-aloud format can make tangential inferences like these explicit when
an individual says them aloud. There may be different supports for this type of tangential, but
productive, inferences within a think-aloud and within a silent assessment.

Case Study Conclusions
This case showed an example where a participant stated insights regarding the patterns

of state change. These insights mapped directly to the difficulties the participant appeared to
have on the tracing question. He was unsuccessful tracking the state of the variables x and n,
but then had correct insights about how the state of these variables changed. The content of
his insights on the infinite-loop question maps directly to his weakness on the tracing question.

I am not making the argument that the participant’s insights on the infinite-loop
question would be the only path to his success on the tracing question, only that there is a
mapping between this participant’s insights on the infinite-loop question and his apparent
weaknesses on the tracing question. None of the participants returned to the tracing question
after answering the infinite-loop question; therefore it is not possible to demonstrate that
Rick’s or other participants’ insights were in fact productive, only that they might have been
productive. The ability to use multiple methods to check an answer may be a type of expertise
and these insights would be productive for that purpose.

I also do not claim that the participant would necessarily have had the same insights on
the infinite-loop question if he had not first attempted the tracing question. It is possible that
the participants developed a greater understanding of the WhatIsIt function by attempting
to trace it.

Previous Research
There is great interest in understanding students’ difficulty explaining code beyond line-

by-line descriptions (Hoadley, Linn, Mann, & Clancy, 1996; Whalley et al., 2006; Philpott,
Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister,
2009). Much of the research in this area has been conducted by research from the BRACElet
project, which has investigated the hypothesis that there exists a hierarchy of programming
skills (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, &
Lister, 2008; Venables, Tan, & Lister, 2009). Lopez, Whalley, Robbins, & Lister (2008) found a
positive correlation between participants’ performance summarizing code and their
performance writing code, which was statistically significant at the .01 level. They used these
data as partial evidence for the existence of a hierarchy of programming skills. Venables, Tan,
and Lister (2009) describe this hierarchy of programming skills in the following quote:

 “First, the novice acquires the ability to trace code. As the capacity to trace becomes
reliable, the ability to explain code develops. When students are reasonably capable of
both tracing and explaining, the ability to systematically write code emerges.” (p. 128,
Venables, Tan, & Lister, 2009)

www.manaraa.com

 Partial Descriptions of State Change

 65

Whalley et al. (2006) attempted to categorize the level of abstraction in participants’
attempts to “Explain in plain English” what a particular segment of code “does.” They used the
Structure of Observed Learning Outcome (SOLO) taxonomy (Biggs 1982, Biggs 1999) to perform
this categorization. The SOLO taxonomy was designed to describe stages in students’ learning
within a domain. The bullets in Figure 38 show the five levels of understanding identified by
Biggs (1999) that may serve as a reminder for those familiar with the SOLO taxonomy. These
descriptions may be insufficient for a reader unfamiliar with the SOLO taxonomy, but only two
categories are prominently featured in previous computer science education research and are
elaborated in the following paragraph.

 Pre-structural - The task is not attacked appropriately; the student hasn’t really
understood the point and uses too simple a way of going about it.

 Uni-structural - The participant’s response only focuses on one relevant aspect.

 Multi-structural - The participant’s response focuses on several relevant aspects but
they are treated independently and additively. Assessment of this level is primarily
quantitative.

 Relational - The different aspects have become integrated into a coherent whole. This
level is what is normally meant by an adequate understanding of some topic.

 Extended abstract - The previous integrated whole may be conceptualized at a higher
level of abstraction and generalized to a new topic or area.

Figure 38. The five levels of understanding from the SOLO taxonomy, quotations from Biggs (1999)

To make the SOLO taxonomy accessible to computer science educators, Whalley et al.
(2006) provided descriptions of the categories as they relate to types of questions from
computer science. For example, they operationalized the SOLO taxonomy category of
Relational as “Provides a summary of what the code does in terms of the code’s purpose” (p.
248, Whalley et al., 2006). The Relational category is emphasized in their work as a target for
participants’ explanations. The other SOLO category emphasized in their work is the
Multistructural category, which they describe as when a “line by line description is provided of
all the code. Summarization of individual statements may be included.” (p. 248, Whalley, et al.,
2006).

In this line of work, which investigates students’ ability to provide summaries of code,
researchers frequently used the SOLO taxonomy to rate the quality of participants’ code
summaries (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley, Robbins,
& Lister, 2008; Venables, Tan, & Lister, 2009). These descriptions seem to assume that a
participant’s responses would fall into a single category and that a response would include
either a line-by-line description of the code or would include a summary of the code’s purpose.
If a student’s response included elements matching the Relational category and other elements
matching the Multistructural category, it would be difficult to classify the response with one of
these categories. Venables, Tan, and Lister (2009) found that it was difficult to reliably
categorize students’ responses. An expert would, by definition, be able to provide both forms
of explanation; therefore it is easy to imagine that a response could match both the Relational
and Multistructural category descriptions.

www.manaraa.com

 Partial Descriptions of State Change

 66

While Venables, Tan, and Lister (2009) argue that there exists a hierarchy of
programming with tracing, describing and writing code, they also acknowledge some limitations
of their work. Their data might exhibit the same patterns if the tracing questions happened to
be the easiest, followed by the code explaining questions, and with the code writing questions
as the most difficult. Venables, Tan, and Lister (2009) acknowledge this threat to validity and
also note that the correlations were “particularly sensitive to the specific questions asked.” (p.
117, Venables, Tan, & Lister, 2009). This is consistent with the pattern observed in this study
where a particular context elicited a greater number of statements that could be classified as
Relational.

The work of previous researchers (Whalley et al., 2006; Philpott, Robbins, & Whalley,
2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009) and the SOLO
taxonomy both highlight what I believe to be an important conceptual challenge for students
learning computer programming, which is to articulate a description of the behavior and goals
of computer programs. The goal of the following section is to characterize the nature of some
of the insights the participants had when answering the infinite-loop question. For this
purpose, the descriptions of the categories Relational and Multistructural provided by Whalley
et al. (2006) are unfortunately too coarse.

Types of Partial Descriptions of State Change
I will identify two types of what I refer to as a “partial description of state change.” The

first type of partial description is what I refer to as a “single-line summary.” This is essentially a
description of how a single line of code modifies state, which has been identified as central to
programming competence (diSessa, 1986; du Boulay, O'Shea, & Monk, 1989; du Boulay, 1989).

The second type, which is the focus of this work, was inspired by research from the
BRACElet project (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley,
Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009), but in my analysis I do not use the SOLO
taxonomy directly. The BRACElet project research referenced above emphasized students’
recognition of patterns of program execution that extend beyond the behavior of a single line
of code. I build upon this emphasis. This is not to diminish the importance of understanding the
behavior of a line of code both functionally and structurally (diSessa, 1986). However, building
upon participants’ understanding of a single line of code, it is possible to identify the behavior
of multiple lines of code rather than just a single line of code.

I will refer to statements that describe the cumulative behavior of multiple lines of code
as a “multiline summary.” When I refer to “multiple lines,” I do not intend to imply that those
lines are unique. For example, consider the code in Figure 39. The first line could be
summarized as “Add 1 to the value of the variable x.” This summary describes the behavior of a
single line of code. An example of a multiline summary would be if the four lines of code in
Figure 39 were described as “add 4 to the value of the variable x.” This describes the execution
of the same line of code multiple times and is a multiline summary about the cumulative
behavior of those lines of code.

www.manaraa.com

 Partial Descriptions of State Change

 67

Figure 39. Code that adds 4 to the value of x.

Here there were sequential copies of the same line of code. A single line of code can
also be executed multiple times when a line of code appears within a loop or a recursive
function and the executions of this line may be only a subset of the code that is executed.
Another example of a multiline summary is when an individual describes the behavior of a
single line of code that is executed multiple times because it appears within a loop or in the
body of a recursive function.

I claim that participants provided multiline summaries and I develop this claim through
two subsections, which analyze participants’ statements regarding the variables n and x,
respectively. Quotations were selected for analysis in each of these subsections if they included
reference to the variables n and x, respectively. I provide examples multiline summaries and
quotations that are similar, but that I do not classify as multiline summaries.

I expect that multiline summaries can be produced by experts and may be particular
relevant for successfully tracing recursive functions. This may be a relevant computer science
competence that is difficult to acquire. These partial descriptions are inspired by the work of
researchers who apply the SOLO taxonomy to computer science (Whalley et al., 2006; Philpott,
Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister,
2009). While there is not a direct mapping between the SOLO taxonomy categories and my
definition of a multiline summary, this previous research provided validation for the importance
of what I define as multiline summaries. The analysis of these quotations is followed by an
argument regarding the potential applicability of these multiline summaries to coordinating
state.

Analysis

Participants’ Partial Descriptions of State Change for the Variable n
Research from Whalley et al. (2006) suggests that participants’ summaries of code that

do not focus on a line-by-line description of the code are rare. The quotations below are
perhaps distinctive as they focus on the changes in the value of the variable n and not the
behavior of a single line. To make my definition of multiline summaries clearer I will describe
the ways in which the first four quotations can be classified as examples of a multiline summary
and the ways in which the fifth quotation cannot be classified as such. These examples are
intended to show the range of multiline summaries. I have selected cases that less directly
qualify as multiline summaries to show the boundaries of the classification scheme. Despite the
diversity among multiline summaries that I demonstrate here, I argue that these multiline
summaries are a coherent and observable artifact. This contrasts with the SOLO taxonomy,
which is not a sufficiently precise analytic tool for the goal of the chapter to characterize

www.manaraa.com

 Partial Descriptions of State Change

 68

participants’ insights. In the following analysis I identify the quotations as examples of multiline
summaries and/or examples of Relational or Multistructural statements for the purpose of
demonstrating the differences between these classification systems.

1. “you repeatedly subtract one from n” (Brown_TR)

2. “we’re counting down to one” (Orange_TL)

3. “n only gets smaller as you keep going” (Orange_TR)

4. “it will turn negative” (Purple_TR)

5. “you start with n and then you’d n minus one and then once you do that then subtract

one from whatever you get and keep going.” (Rick: Yellow_BL)

The first quotation describes the process of “repeatedly subtracting one from n.” Even
though “subtract 1 from n” describes a single line of the code, with minimal rephrasing from
the actual syntax, the use of the word “repeatedly” refers to the combined action across
multiple function calls and therefore is an example of a multiline summary. This quotation falls
short of the SOLO taxonomy category of Relational, which Whalley et al. (2006) describe as
“provides a summary of what the code does in terms of the code’s purpose.” While the
participant summarizes the code, this summary is not strictly “in terms of the code’s purpose.”
Recall that Whalley et al. (2006) describe the SOLO taxonomy category of Multistructural as
characterized by a “line by line description is provided of all the code.” This quotation would
not be classified as Multistructural, because the participant does not describe all lines of code.

Similarly, the phrase from the second quotation of “counting down” refers to multiple
executions of a process of counting down and is an example of a multiline summary. Unlike the
first quotation that included a minimally rephrased description of a single line of code, this
second quotation describes subtracting one as “counting down.” Coincidentally, describing the
process of subtracting one as “counting down” maps reasonably well to the SOLO Relational
category because, as described by Whalley et al. (2006), the participant summarizes the line of
code “in terms of the code’s purpose,” which could be described as to count “down to one.”

The third quotation does not explicitly mention the operation of decreasing the value of
n, only that “n only gets smaller.” This again provides a summary across multiple recursive calls
of how the value of n changes and therefore is a multiline summary. However it does not
reference a goal or include summaries of all lines of code and is therefore not classifiable as
Relational or Multistructural, respectively. This third quotation is also less specific than the first
or second. It indicates the direction of change for the value of the variable n and not the
magnitude. In some cases this lack of specificity may be productive for reasoning about parts of
code in which the details omitted are not important.

www.manaraa.com

 Partial Descriptions of State Change

 69

The fourth quotation is that “it will turn negative,” which describes the changes in value
of the variable n. Unlike the previous quotations, this does not mention a continuing process
created by multiple function calls. Instead, this identifies a specific point within the sequence of
recursive calls at which point the value of the variable n “will turn negative.” The point at which
this transition occurs can be mapped to a specific line of code. However, this specific point
where the value of the variable n becomes negative is within a progression of function calls.
This context makes this not only a description of a single line of code, but how that line
functions within a larger context and therefore is a multiline summary. Like the third quotation,
this quotation is not classifiable as either Relational or Multistructural.

More than the other examples, the final quotation describes a specific line of code. The
participant included the phrase, “and you keep going” in reference to the process of subtracting
one, but the language in this quotation is more directly tied to a single line of code and a single
transition to a second recursive call. For example, two executions of the same line of code are
mentioned, first that “you’d minus one” and then that you’d “subtract one from whatever you
get.” I classify this as a sequential set of single-line summaries. This quotation is included to
show an example of a summary that includes multiple lines of code, but I do not classify this as
a multiline summary.

This set of quotations showed multiline summaries that were and were not possible to
classify as Relational and Multistructural. This serves to show some of the inconsistency in the
SOLO taxonomy and the need for an additional theoretical term to describe what may be an
important inference in tracking program state.

Participants’ Partial Descriptions of State Change for the Variable x
It was common for students to make generalizations regarding the value of the variable

x on the infinite-loop question. Recall that whether or not the function produces an infinite
loop is independent of the value of the variable x. However, the value of the variable x is not
irrelevant in the context of tracing the function because the return value of the function is the
value of the variable x raised to a power. In the previous section I analyzed the extent to which
the participants’ statements provided a multiline summary and not a single-line summary or a
sequential set of single-line summaries about the state of the variable n. Participants’
summaries regarding the variable x did not have the same form. Here I justify why this full set
of quotations should be classified as multiline summaries, rather than justifying the
classification of individual quotations.

Participants typically described the independence of the value of the variable x and
whether or not the function produces an infinite loop, but did not connect that to a specific line
of code. Only two of the quotations below provided a reference to a line of code. The quotation
listed second to last says “you’re not changing x.” This is an accurate statement because each
recursive call passes the unchanged argument x to the function. Although the participant does
not mention a specific line of code, no other lines change the value of x and therefore a single
line of code is responsible for the truth of this statement. The only other statement that
includes even an indirect reference to a single line of code is the participant that said “so it’s n

www.manaraa.com

 Partial Descriptions of State Change

 70

that matters,” which can be seen as making reference to the base case test (= n 1). The
important pattern to note is that few of the participants’ summaries of the variable x include
references to specific lines of code.

The question becomes whether these statements regarding the variable x should be
classified as multiline summaries. Although most participants do not reference the line of code
that guarantees that the value of x remains constant, it is the repeated execution of a single line
that provides the behavior that is then described by the participant. Therefore I classify these
statements as multiline summaries because of the content of each describing the role or
behavior of the variable x. The definition of multiline summaries is intentionally quite broad.
The higher-level category of partial descriptions of state change includes both multiline and
single-line summaries and I expect that both of these sub-categories could be further
subdivided.

I outline some of the patterns from among the participant quotations regarding the
variable x, presented in the same order as the quotations shown below. The patterns within
these quotations help again to demonstrate the range of examples of multiline summaries. One
of the expected dimensions of my definition of the multiline summaries construct is that
identifying a particular statement as a multiline summary does not indicate that this summary is
correct or faithfully explains the behavior of multiple lines of code. A number of the following
quotations demonstrate this feature and instances are noted below.

1. “x could be anything” (Brown_TL)

2. “x can be anything” (Orange_TR)

3. “x can be whatever it wants… but it doesn’t matter what x is because it’ll still return a

value if it’s 0 or less than 0.” (Orange_TL)

4. “the x can be whatever it wants” (Red_TL)

5. “x is independent of anything, you’re just multiplying it” (Yellow_TR)

6. “it’s independent of x because x is whatever is returned” (Orange_BR)

7. “it shouldn’t matter what x is” (Blue_TL)

8. “x doesn’t really matter, so it’s n that matters” (Brown_BR)

9. “it doesn’t matter what x is… you’re not changing x” (Rick: Yellow_BL)

www.manaraa.com

 Partial Descriptions of State Change

 71

10. “it doesn’t seem that there should be any restrictions on x to return a value”

(Purple_TR)

Two participants (1 & 2), with almost identical language, claimed that “x could be
anything” and “x can be anything.” These participants provided no justification and made no
reference to the line of code responsible, but their statements are very similar to the correct
conclusions that x can be any number.

Two other participants (3 & 4) used anthropomorphic language to describe the
constraints on the variable x. Both of these participants used the phrase “whatever it wants” in
reference to the selection of the x value. One of these participants was explicit regarding why
the variable x “can be whatever it wants” and explained that “it doesn’t matter what x is
because it’ll still return a value if it’s 0 or less than 0.”

On the other extreme, two participants (5 & 6) used the technical term ”independent”
to describe the relationship of the value of the variable x and whether or not the function will
return a value. One participant justified that “you’re just multiplying it.” It is true that you are
using the value of the variable x in a multiplication operation. However, in terms of justifying
the independence of x, the real justification is that x does not determine when the base case
has been reached and instead determines the return value, as the participant said, through
“multiplying.” The second participant that used the phrase “independent” justified this claim by
saying that “x is whatever is returned.” As with the previous participant’s justification that
“you’re just multiplying it,” this participant doesn’t mention the fact that x does not determine
when the base case is reached. The justification that the second participant provides that "x is
whatever is returned” is both sometimes inaccurate and is irrelevant to whether or not the
function produces an infinite loop. First of all, some power of x is returned, which is sometimes,
but not always, equivalent to x. Second, whether or not the value of x is returned is irrelevant
to whether or not x determines whether the base case can be reached. Despite these two
participants’ insufficient justifications, they provide an appropriate technical label for the
relationship between the value of the variable x and whether or not the function will return a
value.

Three participants (7, 8, & 9) discussed whether the variable x will “matter.” One
participant asserted that “it doesn’t matter what x is,” and also mentioned that “you’re not
changing x.” This secondary comment would likely be helpful for tracing the value of the
variable x, because if “you’re not changing x” it is not necessary to attend to the value of the
variable x. The other two participants who used the word “matter” sounded less confident in
their responses. The first said “it shouldn’t matter what x is” and indicated some lack of
confidence through his tone and use of the word “shouldn’t.” The other participant explained
that “x doesn’t really matter, so it’s n that matters.” It is accurate that only n matters for
whether or not the base case will be reached, but the participant is slightly imprecise with their

www.manaraa.com

 Partial Descriptions of State Change

 72

language by not clarifying that x is relevant to the output of the function. Again, this
participant’s tone sounded less confident than the first participant described in this paragraph.

The final quotation (10) is similar to the others, but does not fall into any of the previous
clusters of responses. With some hedging language, “it doesn’t seem that,” the final participant
claimed that there shouldn’t be “any restrictions on x to return a value.” The sentiment in this
participant’s statement is not unique; only the language of “restrictions” was unique in the
sample of participants’ answers to the infinite-loop question.

The generalization regarding the independence of the number of recursive calls made
and the value of the variable x could be beneficial to an individual tracing the recursive function
because they could use this generalization to focus their attention on the value of the variable
n. Tracing recursive functions can require tracking a number of variables simultaneously. Insight
regarding the roles of those variables may provide the opportunity to check the tracing of
individual variables or to recognize when and why the values of particular variables will be most
important for the purpose, narrowing the individual’s focus and avoiding distractions.

Conclusions
The above analyses detailed some patterns and subtleties in participants’ partial

descriptions of state change for the variables x and n. However, this analysis did not answer the
open question of what advantage could be provided when tracing the recursive function. I
expect that being able to describe the patterns of state change such as the partial descriptions
of state change I described here is important to programming competence. Given that
participants answered the tracing question before the infinite-loop question, my answer to this
question is not justified with data. However, it is possible to justify this expectation even from
the fact that experts in the domain of computer science would be capable of generating what I
refer to as partial descriptions of state change, including both multiline and single-line
summaries.

Beyond that justification, attending to these patterns of state change could be helpful to
an individual when tracing a recursive function call. One of the challenges of tracing through
recursive functions is tracking the state of variables across each recursive call. Recognizing
patterns of state change could provide a resource to check the specific steps when tracing the
state of variables in a set of recursive calls or even to avoid duplicate or unnecessary checks.
This type of mechanism for checking an individual’s detailed tracing of a function may be a
significant resource for successfully tracing a recursive function.

The recognition of these patterns of state change can be seen as distinct from the
process of tracking specific elements of state. Using an analogy of the mind as a computer, a
computer, when executing recursive calls, does not have a mechanism to identify these
patterns of state change and it would require an additional mechanism. So too, this requires
two paths of reasoning for an individual, which may or may not be an integrated cognitive
process for a human. However, building upon the analogy of the mind as a computer we can
think of tracking individual elements of state and developing partial descriptions of state
change as being two distinct tasks. The first is to trace through individual lines of code and to be

www.manaraa.com

 Partial Descriptions of State Change

 73

able to determine for any input, the resulting behavior of the function. A second is to be able to
describe this pattern of behavior for relevant ranges of input. The infinite-loop question
appeared to orient students to noticing details about the function that are at this second level
of description.

To validate the hypothesis that multiline summaries support individuals in coordinating
state, additional data would be needed. A study could compare individuals’ performance on
various tracing and infinite-loop questions and vary the ordering of these questions. This could
assess if the type of reasoning students used to answer the infinite-loop question is used
productively when tracing the question if they first reason about the cases that produce an
infinite loop. However, even if this does not spontaneously occur, a teaching study could be
used to attempt to elicit this type of transfer. An additional hypothesis to test is that the clinical
interview provided support for examples of multiline summaries, but that the same questions
outside of an interactional interview would not prompt this reasoning pattern. These forms of
investigation could help us develop techniques for scaffolding students in developing multiline
summaries and I believe we may be able to achieve more scaffolding than is provided by the
prompt “describe in plain English” (Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister,
2009).

The following chapter will continue to explore participants’ competence on the infinite
loop question by refining hypotheses regarding what intuitive knowledge about infinite loops
and base cases that may have supported this competence. A question that will remain
unanswered is why the infinite-loop question elicited this intuitive knowledge while the tracing
question did not.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 74

INTUITIVE KNOWLEDGE ABOUT BASE CASES AND INFINITE LOOPS
A body of computer science education research investigates students’ understanding of

the concept of recursion (Kurland & Pea, 1989; Kahney, 1989; George, 2000; Clancy, 2004). This
previous research shows that students experience persistent difficulty understanding the
concept of recursion. However, I know of no research that identifies aspects of recursion that
are unproblematic for students. In addition, I know of no research that analyzes which aspects
of recursion are built on, or could be built on, robust intuitive resources. To investigate these
undocumented aspects of individuals’ understanding of recursion, I analyze students’ intuitive
resources about infinite loops and base cases from an interview study with introductory
programming students. I found that participants’ explanation of how to create an infinite loop
in a particular recursive function were accurate, used varied non-technical language, and may
have built upon intuitive knowledge. This was true even for participants that demonstrated
poor performance when attempting to trace the same recursive function. The central question
in this chapter is: what prior knowledge accounts for participants’ robust reasoning regarding
infinite loops?

The analysis in this chapter is governed by the Knowledge in Pieces theoretical
framework (diSessa, 1993), which motivates the analytic focus on students’ strengths rather
than the typical focus on students’ weaknesses (Smith, diSessa, and Roschelle, 1993). Smith,
diSessa, and Roschelle (1993) critique research focused on identifying misconceptions as
characterizing participants’ prior knowledge as fundamentally unproductive. They argue for
developing more comprehensive models of participants’ learning so as to better understand
the role of prior knowledge and both students’ strengths and weaknesses. The current study is
in line with the research direction set out by Smith, diSessa, and Roschelle (1993) and has both
theoretical and practical relevance to computer science education. This direction has
theoretical relevance; we have only partial understanding of the learning process without
exploring the role played by prior knowledge in both successful and unsuccessful learning
attempts. This direction also has practical relevance; we may be able to develop pedagogy that
capitalizes on participants’ intuition and prior knowledge as has been done in other domains
(e.g., diSessa & Minstrell, 1998).

The motivation for this and the previous chapter was the fact that students who
demonstrate some lack of understanding of recursion were still correct in reasoning about the
cases that produce an infinite loop. All of the seventeen students that participated in the study
demonstrated correct reasoning and arrived at the correct answer for the infinite-loop question
shown in Figure 41. This is surprising and worthy of study because participants’ proficient
reasoning regarding infinite loops accompanied a variety of levels of overall proficiency with
recursion on the tracing question shown in Figure 41. This pattern need not be universal to
motivate the current exploration, because it may be possible to support individuals to achieve
the same performance. Motivated by these general patterns of participants' correct reasoning, I
set out to analyze the nature of the participants’ knowledge about infinite loops and base
cases.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 75

(define (whatIsIt x n)

 (if (= n 1)

 x

 (* x (whatIsIt x (- n 1)))))

What value is returned by (whatIsIt 4 4)?
A) 8 B) 16 C) 24 D) 64 E) 256
Figure 40. The “tracing question”: a translation of a question from the 1988 APCS exam.

Which of the following is a necessary and sufficient condition for the function WhatIsIt to

return a value if it is assumed that the values of n and x are small in magnitude and are both
whole numbers?
A) n > 0

B) n = 0

C) n > 0 and x > 0

D) x ≤ n and n > 0

E) n ≤ x and n > 0

Figure 41. The “infinite-loop question”: a replication of a question from the 1988 APCS
exam.

To develop hypotheses about the nature and origins of participants’ knowledge of
infinite loops and base cases I build upon both a line of work in cognitive linguistics (Lakoff &
Núñez, 2000; Lakoff & Johnson, 1980), which I will refer to as Metaphor Theory, and the
Knowledge in Pieces theoretical framework (e.g., diSessa, 1993). The ideas that I build upon
from both Metaphor Theory and the Knowledge in Pieces theoretical framework relate to
students embodied experience. The research program was designed to identify plausible
undocumented potential connections between out-of-domain knowledge and computer
science and not to validate a particular connection. Therefore these connections between
embodied experience and computer science are at least somewhat speculative and would
require additional research to refine or validate. However, with the data available I show that
these hypothesized connections are plausible and warrant additional investigation.

Content logs were created of all video data and notes were made regarding segments of
interest and possible patterns. With this process, I identified the pattern that participants
demonstrated correct reasoning and articulate explanations on the infinite-loop question
despite many participants having difficulty tracing the same function.

All participants’ solutions to the infinite-loop question were transcribed. From these
transcripts and associated video clips, I developed local hypotheses that were refined by
considering more data. This was an iterative process informed by the methodology described
by Engle, Connant, and Greeno (2007). For example, an initial hypothesis was that participants’
competence on the infinite-loop question might be because the function WhatIsIt was

particularly easy for students to reason about. This was an initial hypothesis that was rejected

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 76

because many participants demonstrated incorrect reasoning on the tracing question and
correct reasoning on the infinite loop question.

A second initially plausible hypothesis, which was later rejected, related to participants
providing memorized responses. I use the phrase “memorized response” to label a situation in
which a phrase presented in formal instruction is repeated by a participant without changes or
with insignificant changes to wording. In the analysis I provide a representative selection of
participants’ statements about infinite loops and base cases to show that participants’ language
for describing infinite loops was varied and non-technical. I claim these characteristics are
unlikely in a memorized response. This serves as both motivation for the later analysis and as a
result documenting a competence of the research participants.

The analysis is broken into hypotheses regarding the nature and origins of participants’
knowledge of infinite loops and base cases.

The first hypothesis explored in this chapter is that an individual’s understanding of
infinity or components of that understanding can support their reasoning about infinite loops. I
developed this hypothesis from the data by applying both Metaphor Theory and the Knowledge
in Pieces theoretical framework. In Metaphor Theory, Lakoff and Núñez (2000) articulate the
way in which individuals’ understanding of infinity builds upon their understanding of ongoing
iterative processes. I describe this embodied knowledge identified by Lakoff and Núñez (2000)
and how it may relate to students’ understanding of infinite loops. I hypothesize that this same
resource that Lakoff and Núñez (2000) claim supports an understanding of infinity, individuals’
understanding of ongoing iterative processes, supports participants’ reasoning about infinite
loops. From the Knowledge in Pieces perspective I discuss how this intuitive knowledge may be
supported by a previously undocumented p-prim that I refer to as the repeating p-prim.

I observed that some of the participants’ statements about base cases could be
interpreted as using physical language and in this chapter I develop hypotheses about the
nature of participants’ knowledge of base cases by applying both Metaphor Theory (Lakoff &
Núñez, 2000) and Knowledge in Pieces (diSessa, 1993). My application of metaphor theory
suggests that students used two metaphors when describing base cases, and I will refer to
these as Base-Case-State-as-a-Destination and Base-Case-State-as-a-Goal. My application of
Knowledge in Pieces suggests that students used the blocking p-prim to reason about the
blocking role of the function’s base case.

My analysis sought to identify potential sources of individuals’ competence on the
infinite loop question by analyzing the language participants used to describe infinite loops and
base cases. This analysis also highlights potentially rich sources of knowledge that may support
pedagogy for teaching recursion. I did not set out to validate these hypotheses, but through
developing the hypotheses from the data I have connected computer science education to both
the Knowledge in Pieces theoretical framework (diSessa, 1993) and Metaphor Theory (Lakoff &
Núñez, 2000). In particular, I provide two contributions to Knowledge in Pieces theory. First, I
propose as previously unidentified p-prim that I refer to as the repeating p-prim. Second, in
developing this p-prim I propose a clarification of diSessa’s claim that p-prims are inarticulate

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 77

(1993) and specify that although the use of a p-prim provides an expectation that an
explanation is unnecessary, when it is brought to an individual’s attention he or she may still be
able to generate an explanation or draw a conclusion that an explanation could be provided.

Motivation: No Evidence of the use of a Memorized Response
If students provided memorized answers to the infinite-loop question, it would provide

an explanation for the observation that many students answered the infinite-loop question
correctly even though they experienced difficulty on the tracing question. For example, I can
memorize and recall statements from a variety of domains about which I am ignorant.
Responding with this memorized statement in this case would not necessarily indicate an
understanding of concepts from that domain.

Such memorized elements may be present in the knowledge system of a student with
limited knowledge. However, they may also be present in an expert’s knowledge system. For
example, an expert physicist certainly has memorized the phrase “F=ma.” For an expert
physicist, this phrase may be encoded as this specific and very familiar phrase, but the phrase
also relates to the expert’s understanding of forces, mass, and acceleration. Therefore a
“memorized response” is not necessarily a statement devoid of conceptual meaning. However,
eliminating a memorized response as the source of participants’ explanations implies that
participants constructed an explanation based upon their knowledge, which might not be the
case when generating a memorized response.

I expected a memorized response to include technical language already introduced in
the course. Given that the majority of the participants were enrolled in the same course, I
expected that a memorized response used by one participant would show up as repeated
sequences of words used by multiple participants. Even if this language were non-technical it
might be widely used by students if it was introduced in the course.

I present quotations in which participants discussed infinite loops and base cases when
answering the infinite-loop question. The quotations are used to verify that participants did not
display evidence of what I defined as a “memorized response,” which is a phrase presented
during formal instruction that is repeated by a student without changes or with insignificant
changes to wording. This would include technical language or systematically repeated phrases
among participants. General patterns among these quotations are noted, but are tangential to
the primary finding that participants did not appear to use memorized responses. This finding is
used here to motivate the further analysis of participants’ responses.

Table 2 shows quotations from participants who described an infinite process when
answering the infinite-loop question. Participants alluded to the infinite process using everyday
words such as “continues” (Brown_TL) and only one participant used the technical phrase
“infinite loop” (Orange_TL). Some students described the unending nature of the process by
mentioning that it “goes on forever” (Green_TL) or “forever and ever and ever” (Green_TR) or
by using words such as “infinitely” (Orange_BR) and “infinity” (Brown_TR). Three students
focused on the lack of a stop or end of an infinite loop again without using this technical term.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 78

They said that the “function never stops” (Brown_TR), that it is “never going to end”
(Orange_TL), and that it will keep going “unless it like stops” (Purple_TL).

Table 2. Participant descriptions of an infinite process.

 “it just continues being called” (Brown_TL)

 “just keep doing it” (Yellow_TR)

 “it just goes on forever” (Green_TL)

 “the problem will go on forever and ever and ever” (Green_TR)

 “then it will go on infinitely” (Orange_BR)

 “the function never stops , it just repeats itself till infinity” (Brown_TR)

 “it’s never going to end; it’s going to be an infinite loop.” (Orange_TL)

 “this will continue to keep on going unless it like stops” (Purple_TL)

 “then you go down to negative infinity oblivion” (Scratch_Th)

Table 3 shows a collections of quotations in which participants describe the base case
when solving the infinite-loop question. There was a variety of language used to describe the
base case; for example, participants said that “n has to be able to become one” (Orange_TR)
and that you “have to eventually get n equals one” (Red_TL). Participants also talked about the
“condition” (Red_TR & Orange_BR) that needed to be “satisfied” (Red_TR & Red_TL) or
“fulfilled” (Orange_BR). Only a single student used the technical language of “base case.” Again,
there are patterns in the participants’ responses, but we can see no systematically repeated
phrases or technical language.

Table 3. Participant descriptions of base cases.

 “it equals one and the program stops” (Brown TR)

 “n has to be able to become one in the end” (Orange_TR)

 “you actually have to eventually get n equal to one” (Purple_TR)

 “this will keep on going on until n equals one” (Red_TL)

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 79

 “we know that we need to get n equal to one” (Yellow_BR)

 “for your recursion to stop your ending condition could be satisfied” (Red_TR)

 “you want to get to n equals one to satisfy this part” (Red_TL, duplicate words removed)

 “this is the condition that has to be fulfilled” (Orange_BR)

 “this is like your exit function right? (referring to the test n==1)” (Purple_TL)

 “if n is one, n would just come in here (referring to the true case of the conditional)”

(Scratch_Th)

 “N must be greater than 0, so that it can return x” (Brown_BR)

 “the base case is n equals one” (Yellow_BL)

The variety of the participants’ language suggests that they had not simply repeated
language they had learned in their programming class. It is unlikely that students would have
used such a varied set of non-technical language to describe a technical process introduced in
their programming course if it was completely unconnected to their prior knowledge and
experience. This result that students were unlikely to be providing memorized responses
serves as motivation for the following analyses, which discuss hypotheses for the nature of
participants’ knowledge about infinite loops and base cases.

Previous Research

Potential Infinity and Actual Infinity
A potentially prerequisite concept for understanding infinite loops is the concept of

infinity. There has been extensive developmental research on children’s understanding of
infinity (Evans, 1983; Monaghan, 2001; Falk, 2010), which informs my assessment of the
plausibility of this hypothesis.

Here I review a recent article that summarizes the development of children’s
understanding of infinity (Falk, 2010). Based upon previous research, Falk identifies
components of infinity that are more and less understood by individuals. For example, she
separates two models of infinity: potential infinity and actual infinity. Potential infinity is
identified as a process such as counting that progresses toward infinity, which Falk and others
have identified as easier to understand. Falk (2010) summarizes from other studies “that
children’s repeated experience of forming successors while counting eventually leads, by

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 80

induction, to conceiving the unending succession.” (p. 27). The more difficult idea of actual
infinity represents infinity as an object, which in reality can never exist.

Falk (2010) summarizes that “roughly from about age 8 on, children grasp potential and
actual infinity." (p. 1). This developmental finding removes concern that the population of the
current study, college students, would lack rudimentary understanding of infinity. It is
important to note that this expectation that participants “grasp” (p. 1, Falk, 2010) infinity does
not imply that these ideas will be accessible or productively used by participants in a new
context like computer programming; it only implies that a grasp of infinity could serve as a
resource.

Falk (2010) and other researchers investigating children’s understanding of infinity (e.g.,
Evans, 1983; Monaghan, 2001) typically use developmental studies and do not develop models
regarding the nature of this knowledge. I continue with a variant of the hypothesis that
participants’ knowledge of infinity contributed to their competence, but turn to research that
discusses the nature of this knowledge.

Metaphor Theory and the Basic Metaphor of Infinity
In the development of my hypotheses about the nature of participants’ knowledge

about infinite loops and base cases, I applied what I refer to as Metaphor Theory. This line of
research from cognitive linguistics has had many contributors over the past 30 years. I will
ground my description of Metaphor Theory in the work of George Lakoff and colleagues (Lakoff
& Johnson, 1980; Lakoff & Núñez, 2000). Lakoff and Núñez (2000), summarizing this lineage of
research that I refer to as Metaphor Theory, claim that

"One of the principal results in cognitive science is that abstract concepts are typically
understood, via metaphor, in terms of more concrete concepts. This phenomenon has
been studied scientifically for more than two decades and is in general as well
established as any result in cognitive science” (p. 40-41, Lakoff & Núñez, 2000).

Lakoff and colleagues (e.g. Lakoff & Núñez, 2000; Lakoff & Johnson, 1980) map the
language individuals frequently use when describing or discussing a topic to a metaphor or set
of metaphors that make that use of language intelligible. For example, they provide examples in
which affection is “understood in terms of physical warmth” (p. 41, Lakoff & Núñez, 2000).
Using words like “warm,” “cold,” “icy,” and “ice” in a sentence about affection makes use of
this metaphor. These examples of language are assumed to be comprehensible only through
the unconscious interpretive lens of this metaphor.

A central claim of Lakoff and Núñez (2000) is that these metaphors are embodied, or
developed through physical experience. They explain how the concept of infinite processes and
what they call the Basic Metaphor of Infinity (BMI) is developed despite the fact that no
embodied experiences are truly infinite. The central claim underlying the Basic Metaphor of
Infinity is that indefinite processes are conceptualized as iterative processes, which are
processes that repeat. For example, counting can be conceptualized as an unending process.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 81

Lakoff and Núñez (2000) argue that the source of knowledge about infinite processes is
rooted in this aspectual system. Lakoff and Núñez (2000) identify the aspectual system as the
area of the brain that processes the grammatical aspect of verbs. Grammatical aspect, distinct
from tense, includes information regarding time, such as the duration of an action, the
completion of an action, and the frequency of an action.

Lakoff and Núñez (2000) make the frequently contested argument “that a considerable
number of infinite processes in mathematics are special cases of the BMI that can be arrived at
by specifying what the iterative process is in detail.” (p. 161, Lakoff & Núñez, 2000). While these
claims regarding the application of the Basic Metaphor of Infinity to various topics have been
contested (e.g., Schiralli & Sinclair, 2003), I know of no critics who challenge the claim that
individuals’ understanding of iterative processes could serve as a resource for other
understanding, which is the aspect of the theory that is relevant to the current analysis.

Hypotheses Regarding Infinite Loop Knowledge

Relevance of Actual and Potential Infinity
I believe that actual infinity is not relevant to understanding participants’ reasoning

about infinite loops in recursive functions because the WhatIsIt function would not create a
loop that could continue forever. Many of the students mentioned that the function would
“crash.” This is a correct prediction for the WhatIsIt function, which in the case of an infinite

loop would eventually fill up all available memory on the computer. This practical reality
appears to eliminate the need for an understanding of actual infinity, which is the idea of
infinity as an object, for understanding infinite loops in the WhatIsIt function. However,

potential infinity (Falk, 2010), which is the idea of an unending succession, is a relevant idea for
reasoning about infinite loops because infinite loops are often created through repeated
execution of a function. Therefore, an individual’s understanding of potential infinity is
relevant, but not an individual’s understanding of actual infinity.

Relevance of Iterative Processes
 Lakoff and Núñez (2000) claim that individuals conceptualize many infinite processes
(which by definition have no completion or result) as if they were an iterative process with an
intermediate result. However, an infinite loop is an iterative process with intermediate results.
Lakoff and Núñez (2000) explain that the intuitive roots of the Basic Metaphor of Infinity are an
understanding of iterative processes and therefore the intuitive roots of the Basic Metaphor of
Infinity are a plausible contributor to participants’ reasoning.

The Hypothesized Repeating P-prim
 diSessa (1993) developed a theory about a type of intuitive knowledge, which is
frequently derived from physical experience. He referred to this intuitive knowledge as a
phenomenological primitive or a p-prim for short. The theoretical framework chapter provides
a more extensive description of p-prims. Here I build upon this theoretical framework to
identify a p-prim that describes intuitive competence comparable to the experience with
iterative processes discussed by Lakoff and Núñez (2000). I present this previously unidentified
p-prim, the repeating p-prim, and how it connects to competence with infinite loops.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 82

The Repeating P-prim
Schematization: An identifiable pattern of behavior in or of a system is performed multiple
times in sequence. The repetition is rhythmic and predictable, not random or unpredictable.

Attributes: An identifiable behavior, regularity

Relation to schooled physics: The earth repeats its motion around the sun, the earth spins on
its axis, and the moon revolves around the earth. Individuals may see these behaviors as
repeating a specific cycle and not as a dynamic process of forces and momentum producing a
particular pattern of behavior. Another example is a heartbeat. When individuals think about a
heartbeat, they are unlikely to draw upon the complex fluid mechanics knowledge that would
be necessary to truly explain the phenomenon. Instead, a heartbeat can be conceptualized as a
rhythmic and predictable repetition.

Comments: The repeating p-prim is also present in everyday physical experiences such as
walking and breathing. These both constitute identifiable patterns that are conceptualized as a
single behavior that is repeated and are, without question, part of everyday experience. The
repeating p-prim can also be seen in visible artifacts, such as the white lane lines on a freeway,
which reoccur visually as you drive past.

Proposed Modification to P-prim Theory
P-prims provide a sense of obviousness for a phenomenon and with this sense of

obviousness individuals can view the phenomenon as not needing an explanation. diSessa
(1993) models p-prims as inarticulate, which means this sense of obviousness is not provided by
an articulate description of the situation. The repeating p-prim initially appears to violate the
methodological heuristic for determining p-prims in that they are not articulate (diSessa, 1993).
I will provide an explanation for why I believe that this property of the repeating p-prim is likely
to be true in some cases for other p-prims.

I propose a clarification to the claim made by diSessa (1993) that p-prims are
inarticulate. I do not challenge or attempt to amend that p-prims describe a range of
phenomenon and do so without the use of language. I hypothesize that with directed attention
an individual may override the view of the phenomenon as not requiring an explanation. I
propose that if the need for an explanation is brought to his or her attention, in some cases an
individual may also be able to articulate what they believe to be an explanation of the
particular phenomenon or articulate that an explanation could hypothetically be provided.

Sometimes, but not always, this explanation may be a scientifically accepted
explanation. For example, consider a physicist interacting with the world around her. This
physicist is capable of providing a scientifically-normative explanation for how a book rests on a
table. However, when moving objects around a desk, she does not need to reason about the
placement of each book starting from first principles. Instead, she can rely on more primitive
physical intuition such as the supporting p-prim. The supporting p-prim is schematized as
“’Strong’ or stable underlying objects keeps overlaying and touching object in place.” (p. 220,
diSessa, 1993). Her interaction with the physical environment can be guided by this inarticulate

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 83

p-prim and not her full explanation. It would be immensely inefficient if she always reasoned
from first principles that the book will rest on the table. Again, this does not imply that the p-
prim itself is articulate, only that there can exist, in parallel to the competence of applying the
p-prim, a competence to provide a correct scientific explanation.

P-prims vary in the level of knowledge necessary to be able to provide what the
individual believes to be an explanation for the phenomenon. The example above described an
individual that could provide a scientifically-normative explanation, but an articulate
explanation need not be scientifically normative to be an instance where an individual believes
an explanation to be necessary. For example, the dying away p-prim explains why an object
that is pushed will eventually come to a stop. When applying the dying away p-prim the
individual sees the phenomenon as requiring no explanation. However, if the need for an
explanation is brought to their attention, many non-physics experts may believe that they can
provide an explanation of this phenomenon. This may appear to violate diSessa’s claim that p-
prims are inarticulate (1993), but I propose that it is not necessary to assume that an individual
could not produce an articulate explanation for the phenomenon addressed by the p-prim.

Many situations in which the repeating p-prim can be applied may be seen as
explainable. Consider the application of the repeating p-prim to understanding walking. I expect
that in most cases individuals view walking as requiring no explanation, but if the need for an
explanation is brought to their attention they may be able to provide what they believe to be
an explanation of the phenomenon.

In the example of the physicist, her hypothetical p-prim use when moving objects on a
desk appeared disconnected from her scientific knowledge. The question remains whether the
hypothesized repeating p-prim provides a similar type of inarticulate intuition for a class of
phenomenon. Is it possible for an individual to use only the repeating p-prim to reason about a
particular repeating phenomena and not their articulate knowledge? If this is not possible for a
particular phenomenon, it implies that the repeating p-prim does not apply to the
phenomenon. If the hypothesized repeating p-prim provides only articulate reasoning for all
relevant phenomena it would not be classified as a p-prim.

Hypotheses Regarding Base Case Knowledge
 During the analysis, I observed that participants used metaphoric language in their
explanations of base cases, which informed an initial hypothesis that metaphor, or the source
domain of these metaphors, provided resources that produced the competent performance
observed on the infinite-loop question. I developed and present two hypothesized metaphors
used by the participants. I have named these two metaphors, Base-Case-State-is-a-Destination
and Base-Case-State-is-a-Goal, using the naming conventions used by Lakoff and Núñez (2000).
I provide brief quotations from the participants’ responses to the infinite loop question to
demonstrate some of the use of metaphoric language specifically aligned with each of these
metaphors. I hypothesize that the blocking p-prim (diSessa, 1993) may be productive for
reasoning about base cases and that participants’ use of physical language may be evidence of
the use of the blocking p-prim.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 84

The first hypothesized metaphor is referred to as Base-Case-State-is-a-Destination. The
participants sometimes discussed the state that satisfies the base case as if it were a physical
location or destination. The metaphoric language in these examples suggests a physical arrival
at a stopping condition. For example, the variable n was described as needing to have “got to”
(Purple_TL) or to “reach” (Purple_TR) a location or state. Another participant described the
infinite loop case as “it will never hit an end to the recursion.” (Purple_TR). The language of “hit”
suggests that the “end to the recursion” is a physical location that can be “hit.” Another
participant explained the non-infinite loop case as “it will eventually hit n equals 1 at one point”
(Red_TL). This participant’s statement included a similar use of the word “hit” and the phrase
“at one point,” which suggests the passage of time and is consistent with a metaphor of
reaching a physical location.

The second hypothesized metaphor will be referred to as Base-Case-State-is-a-Goal.
There was another set of participants that described the state that satisfies the base case as a
goal without the physical language shown above. The following examples are consistent with a
non-physical specification of the word goal. Participants mentioned that you “have to have n
equal to 1” (Red_TR), “have to eventually get n equal to 1” (Purple_TR), and that n “has to be
able to become one in the end” (Orange_TR). In addition to these examples that emphasized
the need or goal for the value of the variable to equal one, other participants described this
goal as something that the code needed to “satisfy” or “fulfill.” For example, participants
explained that the base case condition “has to be fulfilled” (Orange_BR), and that “you want to
get to n equals one to satisfy this” (Red_TL), and that “we need to get n equal to one”
(Yellow_BR).

I do not have evidence from my study that metaphor functioned to determine
individuals’ reasoning. However, given the observation of metaphoric language, metaphor may
have contributed to individuals’ reasoning. From the Knowledge in Pieces theoretical
framework, I assume that individuals may appear inconsistent in their reasoning and therefore
may be inconsistent in their metaphor use. This challenges the idea that metaphor shapes
individuals’ reasoning patterns. I expect that there is diversity in individuals’ cognitive resources
and that metaphor may enable the application of cognitive resources that might not otherwise
be applied. For example, in the case of the Base-Case-is-a-Destination metaphor, an individual’s
knowledge and experience of destinations may support reasoning about base cases. Perhaps
even this use of metaphoric language suggests that this could be a productive anchor for
students’ understanding of base cases.

Based upon analyzing my data using ideas from the Metaphor Theory, I conclude that
students can use metaphoric language to describe the state that satisfies the base case.
However, I cannot claim that a single metaphor or even a set of metaphors is responsible for
the competence observed because in the data corpus not all students used a single metaphor
and individual students used metaphoric language intermittently. Because Lakoff and Núñez
(2000) present hypothetical instances of metaphor use, and not from naturally occurring
speech, I do not have a reference for what level of uncertainty should be expected in
participants’ statements.

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 85

If we were able to identify a single metaphor that was responsible for the competence
with base cases, say the Base-Case-is-a-Destination metaphor, pedagogically relevant questions
would remain with regards to the nature of individuals’ knowledge about destinations. What
knowledge and types of knowledge about destinations are utilized when using the metaphor?
How do differences in individual’s knowledge about destinations shape their use or
understanding of this metaphor? There may be a p-prim, which is a description of physical
intuition built by experience, which contributed to reasoning about base cases and can shed
light on the nature of participants’ embodied knowledge.

diSessa (1993) schematized the blocking p-prim as explaining when “an object's
tendency toward motion is thwarted by another object in its path” (p. 133, diSessa, 1993). This
can be seen as a rough approximation of the role of a base case in preventing continued
execution of a recursive function providing correct intuition. I hypothesize that the blocking p-
prim may be productive for reasoning about base cases and that participants’ use of physical
language may be evidence of the use of the blocking p-prim.

diSessa explains that the blocking p-prim does not imply agency. “Blocking (what a
heavy brick does to a hand striking it) and bouncing impute no agency, but are kinematic, as it
were, describing phenomena visually and geometrically.” (p. 128, diSessa, 1993). This lack of
agency is consistent with the participants’ statements about base cases because only the
variable n and the recursive function were described as actors and never the base case. Instead,
the base case was something that you “got to” (Purple_TL), could “reach” (Purple_TR) or even
“hit” (Purple_TR). These descriptions appear to be spatial, which is consistent with the genesis
of the blocking p-prim in physical experience.

diSessa describes that the development of physics mastery requires decomposing the
behavior described by the blocking p-prim into relevant forces and that the blocking p-prim
alone provides a naïve and not scientific explanation of some physical situations. Similarly, in
the computer science context, the blocking p-prim is relevant to how the recursion stops, which
is actually through the absence of the recursion being continued by a recursive call and not
through blocking per se.

Conclusion
Recursion is typically identified as one of the most difficult concepts in computer

programming and novice programmers frequently make mistakes in writing recursive functions,
which sometimes generate infinite loops. The data presented in this chapter contrast the
community’s perception of the difficulty of recursion by identifying an area of strong intuitive
knowledge, which supports correct reasoning about some aspects of recursive processes. I
argue that some components of infinite loops are “easy” and I have demonstrated what may be
some substantial strength for reasoning about infinite loops in recursive functions. From a
theoretical perspective, this is important progress toward the goal of developing a theory
regarding the nature of programming knowledge and knowledge of recursion more specifically.
This is not intended as an argument that competence with recursion is in fact easy to acquire,
only to present hypotheses about specific intuitive knowledge on which additional competence

www.manaraa.com

 Intuitive Knowledge about Base Cases and Infinite Loops

 86

could be built.
 I documented participants’ varied and non-technical language to describe infinite loops
and base cases. I claimed that because of these features participants were unlikely to be simply
repeating memorized phrases from instruction when answering the infinite-loop question. This
motivated my investigation of the nature of the knowledge that participants used in this
context.

I concluded that individuals’ understanding of infinity, particularly some of the
problematic aspects of this understanding, were unlikely to be necessary for reasoning about
infinite loops. Instead, embodied knowledge that Lakoff and Núñez (2000) identified as
supporting individuals’ understanding of infinity can be seen as relevant to understanding
infinite loops. Lakoff and Núñez (2000) characterize this knowledge as derived from the
aspectual system. To characterize the same knowledge I document what I believe to be
relevant and previously undocumented p-prim, the repeating p-prim. In introducing this p-prim,
I offer up a refinement to the model of p-prims, which is, in essence, that p-prims can exist in
parallel with articulate explanations of the same phenomenon.

Lastly, I documented that participants’ language to describe base cases used physical
and metaphoric language. This could be evidence of the use of metaphor and I developed two
potential metaphors that may have been used by participants. Building upon a similar direction,
I proposed that the blocking p-prim (diSessa, 1993) may have provided a source of intuition for
reasoning about base cases in recursive functions.

 The work presented in this chapter sought to identify potential sources of
intuitive knowledge with which to reason about infinite loops and not to validate a particular
set of hypotheses. This chapter also connects computer science education research with other
studies investigating the nature and sources of prior knowledge (diSessa, 1993; diSessa &
Sherin, 1998; Lakoff & Núñez, 2000) and also highlights potentially rich sources of knowledge
that may support pedagogy for teaching recursion.

www.manaraa.com

 Substitution Techniques

 87

SUBSTITUTION TECHNIQUES
 The overarching goal of this research program is to better understand students’ out-of-
domain knowledge that is relevant to reasoning about computer programs. This chapter
describes some connections between algebraic substitution and techniques that are applicable
to reasoning about recursive functions in a computer science context.

This connection between mathematical substitution and tracing recursive functions
became a central focus when the participant Emily5 (participant identifier: TS_6) connected a
technique she used to trace a recursive function with substitution in mathematics. She created
the representation shown in Figure 42 and made the following comment, which is relevant to
all of the substitution techniques described in this chapter.

“Again like I was saying with the math. Math and then you just substitute in something
for its equivalent value. Like if they tell you like y is equal to 5 (writes ‘y=5’) and then you
see like 4 times y (writes ‘4*y’) Well you just have to do 4 times 5 (writes ‘4*5’).”

Figure 42 Emily's representation of the connection between substitution in math and programming.

 In Emily’s example the variable y is replaced with the value of 5. Emily described that
you can “substitute in something for its equivalent value,” which is a central component for
each of the substitution techniques described in this chapter.

The primary audience for these descriptions is computer science educators. This chapter
includes descriptions of four substitution techniques that I refer to as simulating execution,
accumulating pending calculations, memoization, and solving it by hand. The purpose of this
chapter is to provide a clear articulation and prototypical examples of each substitution
technique. These techniques were identified within the data corpus of this dissertation and
examples of students’ reasoning are narrated to provide an example of each technique. The
examples show the techniques applied to linear recursion in a functional programming
environment. I do not claim that these techniques describe all of the ways in which substitution
can be used within computer science. This preliminary taxonomy is speculative and deserves

5 All names are pseudonyms

www.manaraa.com

 Substitution Techniques

 88

additional research and refinement. I will describe a program of future research. Even in the
current form, I hypothesize that these substitution techniques are pedagogically valuable and
discuss potential benefits in the discussion section.

To aid in my description of these substitution techniques I use a typical definition and
define a “recursive call” as a function call, within the body of a function, to that same function.
The initial function call, which does not originate from within that function, does not constitute
a recursive call; I will refer to that as the “initial function call.” Recursive calls are still function
calls and I will refer to both initial functions and recursive calls as “function calls.”

Table 4 shows diagrams of the four substitution techniques discussed in this chapter.
The top rectangle in each diagram represents the function call that is being traced by the
person using this technique. The other rectangles represent recursive calls and, in some of the
diagrams, include calculations that are generated during execution of that recursive call. The
arrows indicate the order in which the technique requires the individual to reason about each
recursive call. Each of these techniques and accompanying diagrams will be described in detail,
but even without these details it is possible to observe differences between the techniques in
the relative order of execution. The first technique, simulating execution, begins at the initial
function call and then progresses down to the base case and back up. The second substitution
technique is accumulating pending calculations, which progresses only from the initial function
call down to the base case. The third substitution technique is memoization, which progresses
only from the base case up to the initial function call. The fourth substitution technique, solving
it by hand, includes only the initial function call and the first recursive call, but does not
consider other recursive calls or the base case.

Table 4. Table of all substitution techniques

Simulating Execution

Accumulating Pending Calculations

www.manaraa.com

 Substitution Techniques

 89

Memoization

Solving it by hand

Leron and Zazkis (1986) also distinguished different orderings in which recursive
functions could be considered. They generalized that mathematicians and computer scientists
discuss recursive process as progressing in different directions. They claimed that
“mathematicians think of the first part of the definition as a ‘start rule’, whereas computer
scientists refer to it as a ‘stop rule’.” (p. 25, Leron & Zazkis, 1986) They provided a “likely”
description of the factorial function from the perspective of both a mathematician and
computer scientist. They claimed that a mathematician would justify that the “definition
enables us to compute 1!, then 2!, then 3! And so on to any desired n” (p. 25, Leron & Zazkis,
1986) whereas a computer scientist would justify that “we can compute n! as soon as we know
(n-1)! , which in turn can be computed of we know (n-2)! , and so on until we reach 1!” (p. 26,
Leron & Zazkis, 1986). In regards to execution order, the mathematician justification is most
similar to the substitution technique of memoization while the computer scientist’s
hypothetical justification is most similar to the substitution technique of simulating execution.

 Leron and Zazkis (1986) discussed the similarity between recursion and mathematical
induction. This is another possible connection between mathematics and computer science, but
induction may be no less difficult for students than recursion. This is in stark contrast to the
pedagogical recommendation of this chapter to build upon students’ competence with
algebraic substitution, which I expect is unproblematic technique for many students.

This chapter is inspired by the assumption of college students’ competence with
mathematical substitution, but I do not develop a nuanced distinction between algebraic
substitution and other related techniques within mathematics. Instead I use Emily’s example
here as a prototypical example of what I believe to be a familiar and common process in
algebraic reasoning.

 In this chapter I attempt to specify different instantiations of this idea of “substitute in
something for its equivalent value” in the context of recursive functions. This set of
substitutions may also be helpful for educators to provide students with specific techniques to
trace or reason about state in recursive functions. Using more detailed analysis techniques such

www.manaraa.com

 Substitution Techniques

 90

as coordination class theory (diSessa & Sherin, 1998) in future work could help develop possible
dependencies of applying these techniques.

Methods
 The set of substitution techniques was developed from observing the ways participants
traced recursive functions. I was interested in the ways in which participants used substitution
techniques to reduce the difficulty of tracing a recursive function that relied on principles of
mathematical substitution.

The cases were selected to attempt to capture clear examples of the substitution
techniques. Since this work is preliminary the cases are used as an existence proof of these
techniques and are not analyzed in depth.

This chapter narrates participants’ solutions from two of the interview problems. These
narrations include my interpretation of participants’ statements and details of their apparent
use of the substitution technique. These problems included the WhatIsIt and Mult recursive
functions shown in Figure 43 and Figure 44 respectively. A full description of these functions
and the questions in which they are found is located within the methods chapter.

What value is returned by WhatIsIt(4, 4)?
 (define (WhatIsIt x n)

(if (= n 1)
x
(* x (WhatIsIt x (- n 1))))

a) 8 b) 16 c) 24 d) 64 e) 256
Figure 43. The WhatIsIt Question, a replication of a question from the 1988 APCS exam, translated to Scheme.

Figure 44. Reproduced version of the multiplication question from the 1988 APCS exam.

 In my explanations of the substitution techniques I will use the factorial function shown
in Figure 45, which calculates the factorial for an input x in the programming language Scheme.

www.manaraa.com

 Substitution Techniques

 91

(define (fact x)

 (if (<= x 1)

 1

 (* x (fact (- x 1)))))

Figure 45. Example factorial function written in Scheme.

Substitution Technique: Simulating Execution

Description
I refer to the first substitution technique as simulating execution. This is the traditional

method of tracing recursive functions whereby the recursive calls are traced in the order they
would be executed by a computer. The output from each recursive call is then substituted into
the expression that generated that recursive call.

For example, using the substitution technique of simulating execution to trace the
function fact with the argument 4 would generate the recursive calls shown in Figure 46.

Figure 46. Recursive calls generated by a call to (fact 4).

 The underlined calls in Figure 46 are expanded from the top to the bottom. When the
base case is reached, the value of 1 is substituted for the call (fact 1). This is multiplied by 2
and the resulting value of 2 is substituted for the call (fact 2). This is multiplied by 3 and the
resulting value of 6 is substituted for the call (fact 3). This is multiplied by 4 and the
resulting value of 24 is substituted for the call (fact 4).

Figure 47 shows my diagram of this technique. I will describe how each element of the
diagram relates to the execution of recursive functions, but I do not assume that students using
the technique will necessarily make the same set of connections. Each rectangle represents a
function call. The rectangle shown on the top is the initial function call. The arrows to the right
of these rectangles represent the instantiation of a recursive call. These arrows show the flow
of control in a recursive function, which pauses execution within a particular function call when
a recursive function call is made. In a final recursive call, corresponding to the base case where
no additional recursive calls are made, the value returned by this recursive call is provided to
the calling function that had paused execution. The substitution of this return value at each

www.manaraa.com

 Substitution Techniques

 92

step is shown with the arrows on the left of the rectangles. This also represents a change in
what code is actively executed. An arrow indicates re-initiating execution, where pending
calculation may be executed. Therefore the flow of control begins at the initial function call and
then proceeds to each subsequent recursive call before eventually returning from each
recursive call in sequence. Each arrow is essentially an instance of substitution; the downward
arrows are substitutions that work as an expansion of a particular recursive call and the upward
arrows are substitutions of return values from a recursive call. This representation is the most
accurate in simulating the flow of control in a recursive function, because each time a value is
substituted it corresponds to returning the flow of control to the stack frame for that previous
call.

Figure 47. Diagram of the simulating execution substitution technique

Example
 Figure 48 shows a representation created by a participant (participant identifier:
Orange_TR) when tracing the call (WhatIsIt 4 4). This example was selected from apparent
instances of simulating execution because it showed the most legible and most easily
interpreted representation. Each line in her representation shows the expression that would be
generated by the recursive call on the previous line. However, she did not show the initial
function call (WhatIsIt 4 4). When the return value for each line is identified, starting from
the bottom, this value can be substituted in the previous line. The participant did not identify
each substitution, but summarized “and then you multiply all the fours,” which is consistent
with the implied substitution in the representation.

Figure 48. Written work on the WhatIsIt question by a participant (participant identifier: Orange_TR)

 This substitution technique is valid for tracing embedded recursion, where the paused
function has pending calculations to be executed when the flow of control returns.

www.manaraa.com

 Substitution Techniques

 93

Substitution Technique: Accumulating Pending Calculations

Description
This technique contrasts with the previous in that the calculations that are performed

when returning control to a paused recursive function call are accumulated in a single
expression containing all pending calculations.

For example, using the substitution technique of accumulating pending calculations to
trace the function fact with the argument 4 would generate the recursive calls and calculations
shown in Figure 49.

Figure 49. Recursive calls generated by a call to (fact 4).

 Again the underlined calls to fact in Figure 49 are expanded from the top to the bottom.
However, each line includes all pending calculations. For example, the expanded version of
(fact 3) is substituted in to the expression (* 4 (fact 3)) to produce (* 4 (*3
(fact 2))), which is shown on the third line in Figure 49. The same process generates the
fourth line. Between the fourth and fifth lines the value returned by the call (fact 1) is
substituted into the expression to produce the final expression (* 4 (* 3 (* 2 1))). With
this substitution technique consideration never returns to previous lines because the final
expression contains all necessary state.

Figure 50 shows my diagram of this technique, which unlike the diagram of simulating
execution in Figure 47 does not include an arrow indicating the flow of control returning to the
calling recursive function. Each rectangle still includes a function call, but each rectangle also
includes all pending calculations. In the subsequent line, the recursive call from the previous
line is replaced with the equivalent expanded recursive relationship. Instead of representing
the flow of control, each downward arrow signifies a substitution in which the recursive call is
expanded and substituted in to the expression.

www.manaraa.com

 Substitution Techniques

 94

Figure 50. Schematization of the Accumulating Pending Calculations substitution technique

The accumulating pending calculations technique does not involve retracing through the
previous recursive calls like the substitution technique of simulating execution because all
pending calculations are accumulated in the final expression.

Example
In the next case, the participant (participant identifier: Purple_Scheme) copied the full

expression each time that he substituted in an expanded expression generated by a recursive
call. For example, between the first and second line he appeared to substitute “(* 4
(WhatIsIt 4 2))” in for the expression “(WhatIsIt 4 3).” He was not explicit about this
process of substitution, but he arrived at the correct answer and I infer from the representation
in Figure 51 that he substituted in the expanded expression from each recursive call.

Figure 51. Written work on the WhatIsIt question by a participant (participant identifier: Purple_Scheme)

Like the simulating execution representation shown in Figure 48, he did not write the
initial call of “(WhatIsIt 4 4).” In the final line in Figure 51, he wrote the number 4, which
he said (WhatIsIt 4 1) will “return.” Writing only 4 on the last line instead of the full set of
pending calculations, (* 4 (* 4 (* 4 4))) is a departure from this technique. Despite
these subtle departures, this was the most legible and most easily interpreted use of this
technique.

www.manaraa.com

 Substitution Techniques

 95

Substitution Technique: Memoization

Description
The third abstraction technique relies on calculating and storing the values of particular

functions calls before they would be executed by an initial function call. This is similar to the
optimization of storing the result of previously calculated recursive calls for the purpose of
avoiding redundant function calls. This optimization is referred to as memoization in computer
science and because of the similarity to this optimization I refer to this substitution technique
as memoization.

Although the technique relies on previously calculated values, this substitution
technique can be used to calculate the value for an arbitrary function call. To do this you begin
by calculating the value of the recursive function for an input that does not require any
recursive calls. In the case of the fact function, shown in Figure 45, this would be evaluating
the fact function with an x value of 1. A call to fact with an x value of 1 results in evaluating
the true case of the “if” statement and returns the value 1. Now we know that (fact 1)
returns 1. Next, you evaluate the function call of fact with an x value of 2 or (fact 2). This
calculation results in multiplying the x value, 2, by (fact 1). We know that (fact 1) returns 1
and can substitute in that value for (fact 1). It would not be an example of the substitution
technique of memoization if an individual instead traced the function again for the x value of 1.
Now we know that (fact 2) returns 2 and this resulting value from (fact 2) can be used
when evaluating the fact function for the value 3. This pattern can be continued to identify
the result of an arbitrary recursive call.

This process can be seen as starting at the base case and working toward the desired
recursive call. Figure 52 shows a schematization of this substitution technique. For consistency
with my diagrams of the other substitution techniques, I have shown the base case at the
bottom of this diagram, but this diagram is not representative of the diagrams I would expect
individuals to generate. In this substitution technique, the individuals’ consideration of the
function begins with the base case. If this was written at the top of the individuals’
representation, it would generate a diagram that is an inverted version of the one shown.

In Figure 52 the bottom rectangle is a statement of the output of the function at the
base case. For an instance of the mult function this would be “(mult 1 5) = 5.” All other
rectangles include an expansion of the recursive relationship, such as “(mult 2 5) = (+ 5
(mult 1 5)).” The arrows show the process of substituting in a previously calculated value
such as “(mult 1 5) = 5” into the expression above. After this substitution, the full contents
of the rectangle would be “(mult 2 5) = (+ 5 (mult 1 5)) = (+ 5 5) = 10.” Again,
the arrows do not show the flow of control, but they show the steps of substitution of
previously calculated values such as “(mult 1 5) = 5” or “(mult 2 5) = 10” into a
recursive call that is farther from the base case.

www.manaraa.com

 Substitution Techniques

 96

Figure 52. Schematization of the memoization substitution technique

Example
Emily, who was quoted as connecting her technique to algebraic substitution, used the

substitution technique of memoization on the WhatIsIt problem. I will narrate a single step in
her use of the strategy.

Emily was reasoning about the expression she had written that is shown in Figure 53.
She had already calculated the result of (WhatIsIt 4 1) to be 4. In the following transcript,
Emily was able to articulate how you could use the result from (WhatIsIt 4 1) when
calculating (WhatIsIt 4 2). “I’m thinking that because we found that it was a 4 here, that it
would be 4 times 4. And that would be 16.” She then paused and said “But I think I’m over
simplifying things.” I asked her to clarify and she said:

“Um because like when it was 4 and 1 like okay, so that was straight forward, but for
when it was 4 and 2, what I was doing was like okay, If you have, when you start here. It
becomes 4 and 2 minus 1, so then it’s 1. So then uh oh well so we know what that is, and
that was [4], so then you take it times 4.”

Figure 53. Previously generated tracing of (WhatIsIt 4 2)

A key element in Emily’s explanation of this process is her statement “we know what
this is.” This is the central idea in the substitution technique of memoization. Her statement
“that was 4” stands in place of where she otherwise would have needed to explicitly trace the
value of (WhatIsIt 4 1). Emily proceeded to use the same technique to determine the
return value of (WhatIsIt 4 4).

Substitution Technique: Solving it by hand

Description

In the substitution technique of solving it by hand the individual predicts the output of
the first recursive call made in the body of the initial call to the function. I define “predicting the

www.manaraa.com

 Substitution Techniques

 97

output of the first recursive call” as using a method that is independent of the recursive
function to predict the output of the function. I refer to this substitution technique as solving it
by hand because the output of the first recursive call is determined “by hand” and not by using
the recursive function.

If we were executing the correct version of the function mult with the arguments 5 and
3, the first recursive call made would be (mult 4 3). This substitution technique involves
predicting the output of (mult 4 3). The function mult is supposed to multiply its
arguments. Therefore solving it by hand is trivial and (mult 4 3) is expected to output the
value 12, 4x3. This expected output can be substituted into the expression in place of the first
recursive call.

This requires that the individual is able to predict the output of the function and
therefore requires that the specification of the function is well understood. The WhatIsIt
function, for which the behavior of the function is not provided, is not a candidate for the use
of this technique.

This technique does not require tracing each recursive call. The initial function call is
traced, but then the next recursive call is replaced with a value calculated by hand. This single
step of execution is shown in Figure 54, where each rectangle represents a recursive call. The
right arrow shows the flow of control that causes the first expansion of the recursive call, but
the flow of control to subsequent recursive calls is not shown or considered by the individual
using this technique. In the second rectangle, the value that is calculated by hand is substituted
into the recursive expression. The left arrow shows the resulting value from this expression
returned as the output of the function.

Figure 54. Schematization of the solving it by hand substitution technique

This is a normative technique to evaluate the correctness of a recursive call, which is parallel to
checking one case of an inductive chain. However, this technique does not guarantee that the
recursive function is correct; the base case also needs to be correct and the recursive
relationship needs to be consistent throughout the execution of the recursive function.

Example
 In the following examples, the participant Tim (participant identifier: Orange_TL) used
this technique twice when reasoning about the recursive function mult as specified by two
answer options. Tim had already used the substitution technique of simulating execution to

www.manaraa.com

 Substitution Techniques

 98

trace the function, but because of a systematic error in his tracing of answer option C, he could
not distinguish the behavior of the functions specified by answer options C and D. The recursive
relationship for these answer options are shown in Equation 9 and Equation 10 respectively.
Answer option D is the correct answer option and option C is incorrect, but he believed them to
both be correct. In the transcript below, Tim attempted a new technique, which I classify as
solving it by hand to identify whether answer option C or D was correct. Unlike the presentation
of the other substitution techniques described in this chapter I describe two hypothesized uses
of this technique and discuss some of the uncertainty involved in classifying these hypothesized
uses of the technique.

() ((()))

Equation 9. Correct recurrence relationship specified by answer option D.

 Tim created the representation shown in Figure 55 and did so without tracing individual
recursive calls. There are a number of aspects of his representation that are not explicit. He
created this representation shown in Figure 55 during the following transcript.

“Well if we look at it this way. This one’s going to be y plus (wrote “y+”), and assuming
this works (pointing to answer option D) it’s going to be x minus 1 times y. So it’ll be like
4 y (wrote “4 y”) so that’ll be 5 y (wrote “= 5 y” on the second line), if we start with 5 y
(wrote “5 y” on the first line). So like that should definitely work.”

Figure 55 Inscriptions created by Tim to trace through answer option D

This technique can be used to evaluate the correctness of the recursive call as I
described, but it is uncertain whether or not Tim used this technique. I interpret Tim’s
statements and inscriptions as indicating that he used the technique that I refer to as solving it
by hand, but continue my narration of this case by discussing some of the assumptions in my
interpretation of his solution.

Tim used the inscription of “5 y” in both the first and second lines of Figure 55 and I
interpret the meaning of them differently. In the first line I interpret “5 y” as representing the
initial function call to mult with the arguments 5 and y, which is typically written as (mult 5
y). The “5 y” from the second line I interpret as representing the desired output of the
function call (mult 5 y). It is ambiguous if his inscription of “4 y” should be interpreted as
mathematical notation for 4 times y or as shorthand for the recursive call (mult 4 y).
However, regardless of the interpretation of this inscription his statement “assuming this

www.manaraa.com

 Substitution Techniques

 99

works” is consistent with the use of this technique and he did not show any indication of tracing
a recursive call or referring to a previously calculated value.

At this point he became “pretty confident” that answer option D was correct. He said:
“So I’m thinking it is more likely to be this one, and I’m just not thinking this one (answer option
C) through. I think it’s D. I think it’s D. I’m pretty confident.” Despite his confidence, he was still
unable to use simulating execution to show that option C does not also produce the correct
result. After two additional attempts to trace answer option C, I encouraged him to try to see if
answer option C was correct using the technique he used when creating Figure 55. The
recurrence relationship from answer option C is shown in Equation 10. Using this method he
convinced himself that answer option C is incorrect.

() (() ())

Equation 10. Incorrect recurrence relationship specified by answer option C.

Figure 56 Inscriptions created by Tim to trace through answer option C

“Alright, well that reasoning is – that in theory multiply works. And does what we want. So if
we start with 4 and um. 4 y (wrote 4y). When you run this, it’s going to give us multiply
(wrote “mult“) three times y plus y (wrote “(3 y + y)”). And 3 times y plus y// 3 times 2 y is 6 y
(wrote “6 y” and drew a box around it) So that’s not right. And that would convince me I’m
wrong (referring to his conclusion that answer option C was correct).”

Like the first example where he proceeded by “assuming this works,” here he explained
his reasoning as “that in theory multiply works and does what you want.” Using answer option
C, Tim again traced a single execution of the recursive call specified by answer option C and
substituted in the expected output of the mult function. His inscriptions during this are shown
in Figure 56. Again he appeared to represent the initial function call of (mult 4 y) as “4 y.”
He was explicit about the recursive call to mult that would result. Applying the recurrence
relationship from answer option C shown in Equation 10 and wrote “mult (3 y+y).”

Discussion

Techniques Beyond Substitution
The techniques identified in this chapter are not intended to be comprehensive of all

possible techniques for reasoning about recursive functions. One technique, instead of using

www.manaraa.com

 Substitution Techniques

 100

substitution, involves seeing that the algorithm described by a multiline summary of a function
is the same as the algorithm known by the individual to perform the same calculation. This
mapping allows an individual to conclude that the recursive function works as expected, but
does not involve tracing specific values. This technique was used by only a single participant
among 25 participants on the mult problem shown in Figure 44, which required the
participants identify a recursive function that used repeated addition to multiply two numbers.

Example
When reasoning about the mult problem, the participant named Peter (participant

identifier: Purple_TR) describes “x*y” as “really saying x plus x plus x, y times.” He observed
that answer option D “looks like it might do that” and came to the correct conclusion that
answer option D was the correct answer without ever tracing the function. During the segment
documented in the following transcript, Peter created the representation shown in Figure 576.

“Umm, I can’t really explain it, but this seems reasonable as an answer. (Interviewer: OK,
Why?) Umm, because I kind of think of multiplication as if we have x times y (wrote
“x*y” shown in Figure 57) that’s really saying x+x+x, y times (completed inscriptions in
Figure 57). So, and this looks like. Looks like it might do that, but I’m not sure (pause) So
statement 1, umm. I guess that would imply this (points to answer option D), so I guess
I’ll try D out first.”

Figure 57. Peter's notes when explaining why answer option D was correct

 After making the conclusion that D “seems reasonable as an answer” Peter used simulating
execution to trace through each of the answer options with sample input. Although Peter did not
use the technique to determine his final answer, this is a valid technique with which to reason
about the function and does not involve substitution.

6 The right most annotation may be read as “5 times,” but based upon Peter’s statements interpret it as “y times,”

with the cross of the “t” extending above the “y.”

www.manaraa.com

 Substitution Techniques

 101

Pedagogical Implications
The substitution techniques of simulating execution, accumulating pending calculations,

and memoization all trace each recursive call, but do so in different orders. I hypothesize that
the differences between these three techniques may provide the opportunity to scaffold
students’ understanding of how recursive functions are executed by computers and may
provide the opportunity to highlight relevant features of the execution of recursive functions.
For example, these substitution techniques and the corresponding representations for tracking
state could be taught to students, which may support students in more accurately tracking
state.

The substitution technique of memoization may be the most accessible to a novice
student, because the student only needs to consider a single execution of the recursive function
at a time. However, even without reasoning about an uninterrupted sequence of recursive calls,
the student still has the opportunity to reason about the base case as producing a known value
and the recursive expression producing a value that depends upon another execution of the
recursive function.

The substitution technique of accumulating pending calculations also does not require
reasoning about the execution of multiple recursive calls at a time, but provides the added
complexity of considering each recursive call in an uninterrupted sequence. This uninterrupted
sequence of recursive calls is identical to the sequence of recursive calls executed by a
computer. Transitioning from the use of memoization to the use of accumulating pending
calculations could potentially focus students on this sequence of recursive calls.

The substitution technique of simulating execution requires a more complete model of
how a computer simulates execution of recursive functions. Connecting this technique to the
substitution techniques of accumulating pending calculations may help students reason about
the fact that the flow of control returns to the previous recursive calls. This feature of how a
computer executes recursive calls is important for reasoning about non-linear recursion and
recursion in an imperative programming environment, which both require returning to the
previous recursive call to execute any remaining commands.

All of the substitution techniques build upon the algebraic technique of substitution.
Legitimizing the use of this technique in the ways described above may be important to help
students understand what of their content knowledge from math is applicable to solving
computer science problems. The substitution technique of solving it by hand builds upon
students’ experience reasoning about algorithms, which may be another connection to
students’ out-of-domain knowledge. In the following section I describe how students’ lack of
knowledge about the legitimacy of using algebraic substitution in the ways described above
may create a barrier to the transfer of this relevant skill. I hypothesize that this may be a more
general pattern of difficulty when students are learning to apply elements of prior knowledge
without explicit instruction legitimizing this transfer.

www.manaraa.com

 Substitution Techniques

 102

Barriers to Transfer
In this chapter, I provided an example of how the participant named Emily used the

substitution technique of memoization to solve the WhatIsIt problem shown in Figure 43.
This example included statements from Emily discussing her concern about the legitimacy of
this technique.

Emily was particularly articulate about her thought process and additional quotations
regarding her lack of confidence with this technique are used to introduce the hypothesis that
individuals’ beliefs about the relevance of their prior knowledge from math or other domains
may reduce the instances of productive transfer to the programming context.

Despite the fluidity of her use of memoization and the fact that at one point she
described the process as “obvious,” she continually expressed hesitation about the legitimacy
of the technique. For example, she expressed concern that she might be “oversimplifying
things” and that she is “not using the recursive calls properly.”

“That seems wrong to me. I feel like you’re not taking it. Because it’s supposed to go
back to the case before. I think what I was just doing is thinking of it as math again, like
you just, like when you solve two equations like if you do like, a system of equations, you
just like take one equation and plug it in to the other one. I think that’s what I’m doing
here and I don’t think I can just simply do that. I’m taking it like oh this is its own
equation (pointing to WhatIsIt 4 2) so since, since it’s like equivalent, ‘oh it’s 16’ (with
emphasis) I don’t know if that makes sense but, but if it’s it’s own variable (points to
what is it 4 2) like if you found out it was 16 before, oh you can just plug that in, so then
it’s like 16 times 4, but then, I’m not sure if it’s how I can take, if it can still go back to the
base case.”

In this case the technique Emily was using worked as intended. This is because the
function she was tracing was written using a functional-programming paradigm, in which
functions are guaranteed to produce the same output for a particular input and function calls
have no side effects beyond producing an output.

Emily’s concern about the legitimacy of this math-like technique is the foundation of my
current hypothesis that individuals’ beliefs about the relevance of their prior knowledge from
math or other domains may reduce the instances of productive transfer to the programming
context.

www.manaraa.com

 Conclusion

 103

CONCLUSION
Computer science education research has documented the pattern that many students

are not successful learning to program (e.g., McCracken et al., 2001). However, it remains an
open question what non-programming experiences could prepare students for success learning
to program (Simon et al., 2006). In this dissertation I investigate the question of what
experiences students bring to the computer science classroom, how they can contribute to
success, and how computer science pedagogy can take advantage of them. I hypothesize that
students can make productive use of their out-of-domain knowledge and that this use may
explain the range of novice students’ success learning to program.

A common (Robins, 2010) alternative assumption among computer science educators
and computer science education researchers is that innate aptitude for computer programming
explains the range of students’ success (Dehnadi, 2006; Lister et al., 2004; Reges, 2008; Simon
et al., 2006). According to the work of Dweck (2007) and Steele (1997), when this assumption
underlies pedagogy, student learning and attitudes suffer. This unproductive community
assumption serves as motivation for this work, which identifies specific out-of-domain
knowledge that may account for participants’ successful reasoning. These examples of out-of-
domain knowledge that support students’ reasoning about computer science can contribute to
dispelling the unproductive assumption that innate aptitude for computer programming
explains the range of students’ success.

To investigate what out-of-domain knowledge supports students’ success, I conducted a
detailed analysis of students’ reasoning on computer programming questions that were
identified by previous research as highly correlated with success on the AP CS exam (Reges,
2008). The participants were college students enrolled in one of three introductory
programming courses at the University of California, Berkeley. As such, these students had
been successful in their previous academic pursuits and could be expected to have a variety of
out-of-domain knowledge, some of which may be relevant to reasoning about computer
programming problems.

This dissertation is largely exploratory because little is known of how novice
programmers build upon their out-of-domain knowledge. Unlike much of educational research
that focuses only on students’ persistent difficulties, in this dissertation I document
competencies of novice programmers. These competencies are one set of results from the
dissertation.

These competencies also motivated my development of hypotheses regarding the
sources of these competencies, which was primarily theoretical work. To develop these
hypotheses I applied learning theories many of which had not previously been applied to the
domain of computer science.

These hypotheses varied in their level of speculation and additional research provides
the opportunity for validation, refinement, or rejection. Below I provide a summary of the

www.manaraa.com

 Conclusion

 104

primary contributions from each analytic chapter and discuss the level of uncertainty in each
chapter. I compare the uncertainties from each chapter for the purpose of calibration and while
all analyses include uncertainty, I identify instances of more and less uncertainty within my
analyses.

The coordination class of state

Summary
The first analysis chapter analyzes one student’s moment-to-moment reasoning. The

case shows an example where a student explicitly built upon everyday knowledge when
constructing a scientifically normative explanation in the domain of computer science. In this
case study I analyze the computer-science-specific and everyday knowledge of “and” that the
participant used across four episodes. I use coordination class constructs to describe the ways
in which the participant integrated her everyday knowledge of “and” into her reasoning about
the computer science version of “and”. This chapter contributes the first application of
coordination class theory outside of physics and mathematics.

This student, Emily, reasoned about the behavior of the conditional “and,” which from a
computer science perspective requires reasoning about the input and output states of the
conditional “and.” I propose that state is a coordination class. To justify this claim I provide a
description of the extent to which the concept of state meets the requirements for a
coordination class.

Level of Uncertainty in Analysis
In episode two Emily attributed her knowledge as relevant for either “this world” or

“the computer.” Her statements about the nature of her knowledge provide me with a high
level of confidence for the classification of some of her knowledge as out-of-domain
knowledge. However, it remains an open question if this out-of-domain knowledge was
primarily linguistic or had another source. Additional specificity regarding the nature of this
knowledge would be beneficial to the goal of building upon students’ out-of-domain
knowledge.

The generalizability of Megan’s success integrating her everyday knowledge of “and” in
the computer science context is unknown and additional research could target these open
questions and focus more narrowly on the hypothesized productivity of linguistic knowledge for
reasoning about Boolean expressions in computer science.

Partial Descriptions of State Change

Summary
The second analysis chapter develops constructs to describe a type of knowledge that

participants were believed to be using when reasoning about program state, which I refer to as
partial descriptions of state change. This chapter emphasizes the nature of this knowledge and
deemphasizes the dynamics of its use, which was the focus in the previous analysis chapter.

www.manaraa.com

 Conclusion

 105

In my future research the constructs that I develop in this chapter can be used for
tracking the dynamics of participants’ reasoning about state and I hypothesize that these partial
descriptions of state change could serve as a concrete target for instruction.

Researchers have developed the hypothesis that the ability to produce a summary of
code develops after the ability to trace code (Venables, Tan, & Lister, 2009). I observed the
opposite pattern; participants generated summaries of code even when they were unsuccessful
tracing the same code. This demonstrates that individuals’ competence with tracing and
summarizing code is context-specific; there may be no universal pattern of how these
competencies develop and are used across contexts.

Level of Uncertainty in Analysis
The second analysis chapter sought to describe a particular competence rather than

specify a source of knowledge. Labeling and describing a particular competence to develop a
construct is also subjective, but the methods of evaluation are not the same as evaluating a
potentially subjective analysis. Addition analysis, which applies these constructs, is necessary to
determine the usefulness of understanding students’ reasoning about computer program state.

Partial descriptions of state change may also be helpful for students to generate as
preparation for tracing code as a mechanism for checking their individual steps. Independent of
the empirical usefulness of these constructs, these constructs may be productive for
communicating expectations to students’ regarding desired summaries of code.

Intuitive knowledge about base cases and infinite loops

Summary
In the third analysis chapter I developed and present two hypotheses about what out-

of-domain knowledge may have supported students’ correct reasoning about infinite loops and
base cases despite many of these students experiencing difficulty tracing the same function. I
present a hypothesis that individuals’ understanding of iterative processes may support their
reasoning about infinite loops and that this knowledge of iterative processes could have the
same properties as the type of intuitive knowledge that diSessa (1993) referred to as p-prims. I
propose a new p-prim that includes this type of knowledge of iterative processes and refer to
this as the repeating p-prim.

In the third analysis chapter I also present a second hypothesis that students’ embodied
experience may contribute to their reasoning about base cases in recursive functions. I
document that participants used physical language when describing base cases and I developed
two more specific hypotheses about the nature of this embodied knowledge. First, from
examples of participants’ physical language, I developed two metaphors that participants may
have used in their descriptions of the base case in a recursive function. Second, participants’
physical language also inspired my analysis that explains how the blocking p-prim (diSessa,
1993) can provide correct intuition about base cases in recursive functions.

www.manaraa.com

 Conclusion

 106

In developing the hypotheses presented in analysis chapter three I connect both p-prim
theory and Metaphor Theory (Lakoff & Núñez, 2000) with computer science education. In this
application of p-prim theory, I propose a clarification to p-prim theory, which is that although p-
prims provide the expectation that a phenomenon does not need an explanation, if it is brought
to the individual’s attention he or she may still be able to reason articulately about the need for
an explanation.

Level of Uncertainty in Analysis
The third analysis chapter was the most speculative. I applied both p-prim theory

(diSessa, 1993) and Metaphor Theory (Lakoff & Núñez, 2000), which have not previously been
applied to computer science. This analysis was a first step toward identifying the source and
content of students’ relevant out-of-domain knowledge and the hypotheses that students built
upon the repeating and blocking p-prims may be validated, refined, or rejected by additional
research.

Substitution techniques

Summary
The final analysis chapter documents participants’ application of algebraic substitution

techniques to the task of tracking program state in recursive functions, which is an additional
example of how participants used out-of-domain knowledge when solving computer science
problems. The content of this chapter is intended to be valuable to computer science educators
and it describes what appear to be four distinct instantiations of algebraic substitution to track
program state. The fourth analysis chapter proposes a progression of substitution techniques to
scaffold students to reason about the execution order of recursive functions. The chapter
functions as a first step toward a taxonomy of how algebraic substitution techniques can be
applied to tracing the state of recursive functions.

Level of Uncertainty in Analysis
The fourth analysis chapter was the most specific in identifying the likely source of

knowledge for tracing program state as from experience with algebraic substitution. In the
analysis I claim that the techniques can be seen as applications of algebraic substitution. Emily
identified this connection, but I do not make the claim that other students made or would make
this connection. If students generally rejected this connection between algebraic substitution
and recursion, the connection would be unlikely to be pedagogically valuable.

Summary of Contributions
This dissertation applied learning theories that had not previously been applied to

computer science education. Through this application I extend the learning theories to the
domain of computer science, propose refinements to the theories, and provide insights into
participants’ reasoning about particular computer science topics. While open questions remain,
this dissertation provides first steps toward identifying out-of-domain knowledge that students
can apply to solving computer science problems.

www.manaraa.com

 References

 107

REFERENCES

Aronson, J., Lustina, M. J. Good, C., Deough, K., Steele, C. M., & Brown, J. (1999). When
white men can't do math: Necessary and sufficient factors in stereotype threat.
Journal of Experimental Social Psychology 35 (29), 29-46.

Barker, L. J., McDowell, C., & Kalahar, K. (2009). Exploring factors that influence
computer science introductory course students to persist in the major.
Proceedings of the 40th SIGCSE Technical Symposium on Computer Science
Education, Chattanooga, TN, 282-286.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers
in Mathematics and Science Teaching, 20(1), 45–73.

Biggs, J. B. (1999): Teaching for quality learning at University, Buckingham. Open
University Press.

Biggs, J. B. & Collis, K. F. (1982): Evaluating the quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome). New York, Academic Press.

Carr, P. B. & Steel, C. M. (2009). Stereotype threat and inflexible perseverance in
problem solving. Journal of Experimental Social Psychology. 45, 853-859.

Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to
Program. In Fincher, S. & Petre, M. (Eds.), Computer Science Education Research
(pp. 85-100). New York: Taylor & Francis.

Cobb, P.; Confrey, J.; DiSessa, A.; Lehrer, R.; Schauble, L. (2003), "Design experiments in
educational research", Educational Researcher 32 (1): 9–13,

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts. The journal of computing in small colleges. ACM. 107-
116.

Corbin, J. M., & Strauss, A. C. (2008). Basics of Qualitative Research. Thousand Oaks, CA:
SAGE Publications.

Dehnadi, S. (2006). Testing Programming Apptitude. In P. Romero, J. Good, E. Acosta
Chaparro & S. Bryant (Eds). Proc. PPIG 18 (Brighton, UK, September 07 – 08,
2006). PIGG ’06. 22-37.

diSessa, A. A. (1986). Models of Computation, in User Centered System Design: New
perspectives on Human-Computer Interaction, (Eds. D. A. Norman and S. W.
Draper) Hilsdale, New Jersey: Lawrence Erlbaum Associates Inc., 201-218.

diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10
(2-3), 105-225.

diSessa, A. A., (2000). Changing Minds: Computers, learning and literacy, MIT Press.
diSessa, A. A. (2006). A history of conceptual change research: threads and faultlines. In

K. Sawyer (Ed.), Cambridge handbook of the learning sciences. Cambridge, UK:
Cambridge University Press.

diSessa, A. A. (2007). An interactional analysis of clinical interviewing. Cognition and
Instruction. 25(4), 523-565.

www.manaraa.com

 References

 108

diSessa, A. A., & Minstrell, J. (1998). Cultivating conceptual change with benchmark
lessons. In J. G. Greeno & S. V. Goldman (Eds.), Thinking Practices in
Mathematics & Science Learning. Mahwah, NJ: Lawrence Erlbaum Associates,
155-187.

diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International
Journal of Science Education, 20(10), 1135-1191.

diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. In J.
Mestre (ed.), Transfer of learning from a modern multi-disciplinary perspective
(pp. 121-154). Greenwich, CT: Information Age Publishing.

du Boulay, B., O'Shea, T. & Monk, J. (1989). The black box inside the glass box:
Presenting computing concepts to novices, in Studying the Novice Programmer
(E. Soloway & J.C. Spohrer, Eds.) Hillsdale, New Jersey: Lawrence Erlbaum
Associates Inc., 431-446.

du Boulay, B. (1989). Some difficulties learning to program, in Studying the Novice
Programmer (E. Soloway & J.C. Spohrer, Eds.). Hillsdale, New Jersey: Lawrence
Erlbaum Associates Inc., 283-299.

Dweck (2007). Mindset: The new psychology of success. New York, NY: Random House,
Inc.

Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and
personality. Psychological Review. 95(2), 256-273.

Engle, R. A., Conant, F. R. & Greeno, J. G. (2007). Progressive refinement of hypotheses
in video-supported research. In R. Goldman, R. Pea, B. J. Barron & S. Derry (Eds.),
Video research in the learning sciences (pp. 239-254). Mahwah, NJ: Erlbaum.

Evans, D. W. (1983). Understanding zero and infinity in the early school years
(Unpublished doctoral dissertation).University of Pennsylvania, Philadelphia.

Falk R. (2010). The Infinite Challenge: Levels of Conceiving the Endlessness of Numbers.
Cognition and Instruction, 28(1), 1-38.

Fleury, A. (1993). Student beliefs about Pascal programming. Journal of Educational
Computing Research, 9(3), 355-371.

Friedman, D. P. & Felleisen, M. (1996). The Little Schemer - 4th Edition. MIT Press.
Garcia, D. D., Harvey, B., & Segars, L. (2012). CS pirnicples pilot at University of

California, Berkeley. ACM Inroads. 58-60.
Garvin-Doxas, K. & Barker, L. J. (2004). Communication in computer science classrooms:

Understanding defensive climates as a means of creating supportive behaviors.
Journal of Educational Research in Computing, 4(1), 1-18.

George, C. E. (2000) Experiences with Novices: The Importance of Graphical
Representation in Supporting Mental Models. In A. F. Blackwell & E. Bilotta (Eds).
Proc. PPIG 12

Goff, P. A. Steele, C. M. & Davies, P. G. (2008) The space between us: Stereotype threat
and distance in interracial contexts. Journal of Personality and Social Psychology.
94(1), 91-107.

www.manaraa.com

 References

 109

Kahney, H. (1989) What do novice programmers know about recursion? Studying the
Novice Programmer (E. Soloway & J.C. Spohrer, Eds.) Hillsdale, New Jersey:
Lawrence Erlbaum Associates Inc., 209-228.

Kurland, D. M., & Pea, R. D., (1989). Children's mental models of recursive logo
programs. Studying the Novice Programmer (E. Soloway & J.C. Spohrer, Eds.)
Hillsdale, New Jersey: Lawrence Erlbaum Associates Inc., 315-323.

Hammer, D. (2000). Student resources for learning introductory physics. American
Journal of Physics. 68(1), 52-59.

Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2004). Resources, framing, and
transfer. In J. Mestre (Ed.), Transfer of Learning: Research and Perspectives

Harvey, B., & Mönig, J. (2010). Bringing ‘No Ceiling’ to Scratch: Can one language serve
kids and computer scientists? Constructionism, 2010, 1–10.

Hoadley, C. M., Linn, M. C., Mann, L. M., & Clancy, M. J. (YYYY) When, why and how do
novice programmers reuse code? Proceedings of the Sixth Workshop on
Empirical Studies of Programmers, W. D. Gray & D. A. Boehm-Davis (Eds.), Ablex
Publishing, 1996.

Lakoff, G., & Núñez , R. E. (2000). Where mathematics comes from: How the embodied
mind brings mathematics into being. New York, NY: Basic Books.

Lakoff, G. and Johnson, M. (1980). Metaphors we live by. Chicago: University of
Chicago Press.

Leron, U. & Zazkis, R. (1986). Computational Recursion and Mathematical Induction. For
the Learning of Mathematics, 6(2). 25–28

Levrini, O. & diSessa, A. A. (2008) How students learn from multiple contexts and
definitions: Proper time as a coordination class. Physics Education Research, 4,
010107.

Lewis, C., (2007). Attitudes and Beliefs About Computer Science Among Students and
Faculty. ACM SIGCSE Bulletin 39(2), 37-41.

Lewis, C. M., Yasuhara, K., & Anderson, R. E. (2011). Deciding to Major in Computer
Science: A Grounded Theory of Students' Self-Assessment of Ability. Proceedings
of the International Computer Science Education Research Workshop.
Providence, RI. 3-10.

Lewis, C. M., Titterton, N., & Clancy, M. (2012). Using Collaboration to Overcome
Disparities in Java Experience. Proceedings of the International Computer
Science Education Research Workshop. Auckland New Zealand.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,
Mostrom, J.E., Sanders, K., Seppala, O., Simon, B., & Thomas, L. (2004). A multi-
national study of reading and tracing skills in novice programmers. Working
group reports from ITiCSE on Innovation and technology in computer science
education,119-150.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008) Relationship between reading,
tracing and writing skills in introductory programming. Proceedings of the fourth
International Workshop on Computing Education Research. 101-111.

www.manaraa.com

 References

 110

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). Programming by
Choice: Urban Youth Learning Programming with Scratch. ACM Special Interest
Group on Computer Science Education., Portland: ACM.

Margolis, M., Estrella, R., Goode, J., Jellison Holme, J., & Nao, K. (2008). Stuck in the
Shallow End: Education, Race, and Computing (MIT Press)

McCracken, W.M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer,
C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. ACM SIGCSE
Bulletin 33(4):125-140.

Monaghan, J. (2001). Young people’s ideas of infinity. Educational Studies in
Mathematics, 48, 239–257.

NCWIT (2009). By The Numbers. Retrieved from
http://www.ncwit.org/pdf/BytheNumbers09.pdf

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books, Inc.

Parnafes, O. (2007) What does "fast" mean? Understanding the physical world through
computational representations. The Journal of the Learning Sciences. 16(3), 415-
450.

Pennington, N. (1987). Comprehension strategies in programming. In G.M. Olson, S.
Sheppard & E. Soloway (Eds.), Empirical Studies of Programmers: Second
Workshop (pp. 100 – 113). Norwood, NJ: Ablex Publishing Company.

Philpott, A, Robbins, P., and Whalley, J. (2007): Accessing the Steps on the Road to
Relational Thinking. 20th Annual Conference of the National Advisory Committee
on Computing Qualifications, Nelson, New Zealand, 286.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass; teaching CS0
with Alice. Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education, Covington, KY, 213-217.

Reges, S. (2008) They mystery of b := (b = false). ACM SIGCSE, 39, 21-25.
Robins, A. (2010). Learning edge momentum: a new account of outcomes in CS1.

Computer Science Education, 20(1), 37-71.
Russ, R. S. & Sherin, B. (2008). Reframing research on intuitive science knowledge.

International Conference on Learning Sciences. 2, 279-286.
Sajaniemi, J. (2002) Visualizing Roles of Variables to Novice Programmers. In J. Kuljis, L.

Baldwin & R. Scoble (Eds). Proc. PPIG 14. 111-127.
Sajaniemi, J. & Kuittinen, M. (2005) An Experiment on Using Roles of Variables in

Teaching Introductory Programming. Computer Science Education, 15(1), 59 - 82.
Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2008) A study of the development of

students' visualizations of program state during an elementary object-oriented
programming course. Journal on Educational Resources in Computing. 7(4) 1-31.

Schiralli, M. & Sinclair, N. (2003). A constructive response to 'Where mathematics comes
from' Educational Studies in Mathematics. 52(1). 79-91.

www.manaraa.com

 References

 111

Shinners-Kennedy, D. (2008). The everydayness of threshold concepts: `State' as an
example from computer science. In Land, R., Meyer, J. H., and Smith, J., (Eds.),
Threshold Concepts Within the Disciplines (119-128). Sense Publishers.

Simon, Cutts, Q., Fincher, S., Haden, P., Robins, A., Sutton, K., Baker, B., Box, I., de Raadt,
M., Hamer, J., Hamilton, M., Lister, R., Petre, M., Tolhurst, D., Tutty, J. (2006).
The ability to articulate strategy as a predictor of programming skill. Proc Eighth
Australasian Computing Education Conference, Hobart, Australia, Jan 2006.

Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R., Thomas, L., & Zander, C.,
(2008b). Saying Isn't Necessarily Believing: Influencing Self-theories in
Computing. ICER, 173-184.

Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A
Constructivist analysis of knowledge in transition. Journal of the Learning
Sciences, 3(2), 115-163.

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive Strategies and Looping constructs:
An Empirical Study. Communications of the ACM, 26(11), 853-860.

Spencer, S. J., Quinn, D., C. M. Steele (1999). Stereotype threat and women’s math
performance. Journal of Experimental Psychology, 35, 4-28.

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and
performance. American Psychologist, 52(6), 613-629.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test
performance of African Americans. Journal of Personality and Social Psychology.
69(5), 797-811.

Strike, K.A. & Posner, G.J. (1992) A Revisionist Theory of Conceptual Change. In P.A.
Duscal & R.J. Hamilton (Eds.) Philosophy of Science, Cognitive Psychology, and
Educational Theory & Practice. Albany, NY: SUNY Press.

Thaden-Koch, T. C., Dufresne, R. J., & Mestre, J. P. (2006). Coordination of knowledge in
judging animated motion. Physical Review Special Topics – Physics Education
Research, 2(2), 1-11.

Titterton, N., Lewis, C. M., & Clancy, M. (2010). Experiences with lab-centric instruction.
Computer Science Education (Ed. Y. Ben-David Kolikant) 20(2), 79-102.

Venables, A., Tan, G., & Lister, R., (2009). A closer look at tracing, explaining code writing
skills in the novice programmer. Proceedings of the fifth International Workshop
on Computing Education Research. 117- 128.

Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of
conceptual change in childhood. Cognitive Psychology, 24, 535-585.

Wagner, J. F. (2006). Transfer in Pieces. Cognition and Instruction, 24(1), 1-71.
Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K. A., & Prasad, C.

(2006). An Australasian Study of Reading and Comprehension Skills in Novice
Programmers, using the Bloom and SOLO Taxonomies. 8th Australasian
Computing Education Conference, Hobart, Australia. 243-252.

Wittman, M. C. (2001). The object coordination class applied to wavepulses: Analysing
student reasoning in wave physics. International Journal of Science Education.

