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Abstract 

Applications of Out-of-Domain Knowledge  
in Students’ Reasoning about Computer Program State 

by 

Colleen Marie Lewis 

Doctor of Philosophy in Science and Mathematics Education 

University of California, Berkeley 

Professor Andrea A. diSessa, Chair 

 

To meet a growing demand and a projected deficit in the supply of computer professionals 
(NCWIT, 2009), it is of vital importance to expand students' access to computer science. 
However, many researchers in the computer science education community unproductively 
assume that some students lack an innate ability for computer science and therefore cannot be 
successful learning to program. In contrast, I hypothesize that the degree to which computer 
science students make productive use of their out-of-domain knowledge can better explain the 
range of success of novices learning to program.  To investigate what non-programming 
knowledge supports students’ success, I conducted and videotaped approximately 40 hours of 
clinical interviews with 30 undergraduate students enrolled in introductory programming 
courses. During each interview, a participant talked as they solved programming problems, 
many of which were multiple-choice problems that were highly correlated with success on an 
Advanced Placement Computer Science exam. In the analysis of the interviews I focused on 
students’ strengths rather than the typical decision to focus on students’ weaknesses. I 
documented specific competencies of the participants and applied analytic tools from the 
Knowledge in Pieces theoretical framework (diSessa, 1993) to attempt to understand the 
source and nature of these competencies. I found that participants appeared to build upon 
several kinds of out-of-domain knowledge. For example, many students used algebraic 
substitution techniques when tracing the state of recursive functions. Students appeared to use 
metaphors and their intuitive knowledge of both iteration and physics to understand infinite 
loops and base cases. On the level of an individual students’ reasoning, a case study analysis 
illustrated the ways in which a participant integrated her linguistic knowledge of “and” into her 
reasoning about the computer science command “and.” In addition to identifying these specific 
applications of out-of-domain knowledge, this dissertation applies learning theories that had 
not previously been applied to computer science education. Through this application I extend 
the learning theories to the domain of computer science, propose refinements to the theories, 
and provide insights into participants’ reasoning about particular computer science topics.   
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INTRODUCTION 
It is common for a college course to be a student's introduction to programming. Many 

students come with enthusiasm, motivation and a track record of academic success. However, 
despite the best efforts of the student and the instructor, many students appear to never “get 
it” (McCracken et al., 2001).  

It is an open question what non-programming experiences may support success learning 
to program (Simon et al., 2006). In this dissertation I investigate the question of what 
experiences students bring to the computer science classroom, how they can contribute to 
success, and how computer science pedagogy can take advantage of them. There is strong 
support for the assumption that without understanding the interplay between non-
programming knowledge and the learning of programming, pre-programming and 
programming instruction at best will be impoverished and at worst will fail (Soloway, Bonar, & 
Ehrlich, 1983; Fleury, 1993; Ben-Ari, 2001; diSessa, 1986; Vosniadou & Brewer, 1992; diSessa, 
1993; diSessa & Wagner, 2005). 

In this project I investigate the constructivist assumption that prior knowledge can serve 
as a significant support for learning computer programming. I hypothesize that the degree to 
which computer science students make productive use of their out-of-domain knowledge can 
explain the range of success of novices learning to program.  A common (Robins, 2010) 
alternative assumption within the computer science community is that innate aptitude for 
computer programming explains the range of students’ success: people are born as 
programmers or non-programmers (Dehnadi, 2006; Lister et al., 2004; Reges, 2008; Simon et 
al., 2006). According to the work of Dweck (2007) and Steele (1997), when this assumption 
underlies pedagogy, student learning and attitudes suffer.  

To investigate what non-programming resources and non-programming strategies 
support students’ success, I conducted a detailed analysis of student reasoning on computer 
programming questions that were identified by previous research (Reges, 2006) and will be 
discussed at greater length in this chapter and the methods chapter.  

The goal of this line of work is to transform computer science education through 
identifying and building upon students’ strengths to ultimately support the success of more 
students. This is of vital importance to increase access to computer science and to meet a 
growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009).  

Obstacles and Opportunities 

Obstacles 
I hypothesize that there are two related obstacles to the success of introductory 

programming courses. The first is the belief of many computer science students that computer 
science is unrelated to their previous experience and ways of thinking. The second is the belief 
of many computer science instructors and many computer science education researchers that 



www.manaraa.com

 Introduction  

 2  
 

success in computer science is determined by innate ability. Both are counterproductive for 
student learning as is elaborated below (Dweck, 2007; Steele, 1997).  

Student Beliefs 
In a related project (Lewis, Yasuhara, & Anderson, 2011), we found that students 

frequently describe computer science as unconnected to their previous ways of thinking. For 
example, one student said, “It’s like a different way of thinking. Like it’s really confusing. You 
have to get used to it.” Another similar sentiment, “I feel like you shouldn’t do it unless you 
like—unless you’re like more attuned to that kind of thinking. If you don’t think that way, it’s 
just going to be really difficult for you.” Students appear to believe that their existing ways of 
thinking are not relevant to learning to program and that to be successful in computer science 
they have to adopt a completely new way of thinking. This model of adopting a new way of 
thinking rather than adapting your current thinking may be a significant barrier to students 
making productive use of prior knowledge.  

Educational research from a wide variety of fields argues that students’ prior knowledge 
must be taken into account (Ben-Ari, 2004; diSessa, 1993; Fleury, 1993; Soloway, Bonar, & 
Erlich, 1983; Vosniadou & Brewer, 1992). Pennington (1987) found that the most successful 
programmers were those who frequently made connections between the program text and the 
non-programming or real-world goals. Based upon this finding, I hypothesize that students will 
be less successful if they fail to connect their programming knowledge to their prior non-
programming knowledge. 

Instructor and Researcher Beliefs 
The hypothesis that students have untapped resources upon which we can transform 

undergraduate computer science education runs counter to what may be a common 
assumption among computer scientists of the existence of an innate aptitude that determines 
students’ success learning to program (Robins, 2010; Lewis, 2007). While it is possible that 
students could have a genetic predisposition to program computers, this is currently an 
untested assumption, which can have real consequences and can play into self-fulfilling 
prophecies (Dweck & Legget, 1988; Steele, 1997). Even if we assume that many students lack 
the intellectual resources to become as successful as Alan Turing, we hope to connect all 
motivated students with an environment in which they can become competent at 
programming. In contrast, Simon et al. (2006) summarize an ongoing research direction that we 
believe may be an outgrowth of a dearth of explanations of why some students are less 
successful. 

“The literature abounds in assertions of the existence of an aptitude for programming, 
and of attempts to find a suitable predictor for that aptitude so as to avoid wasting time 
and effort educating students who are unlikely ever to become good programmers.” 
(Simon et al. 2006) 

The assumption of an innate aptitude is often implicit and is made explicit in more subtle ways. 
For example Lister et al. (2004) describe why differences in innate talent at various institutions 
constitute a complication in analyzing the study’s multi-institutional data.  
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“Clearly, some institutions attract students with a greater innate talent for 
programming.” (Lister et al., 2004)  

In multi-institutional studies it is arguably relevant to discuss differences in the student 
populations. However in this statement the authors indicate an otherwise unstated assumption 
that there exists an “innate talent for programming”. Barker et al. (Barker, McDowell & Kalahar, 
2009) demonstrates a more subtle instantiation of this assumption of innate aptitude in 
appealing to the idea of “weeding out” students. 

“Introductory classes should weed students out based on ability and potential, not on 
the weight of the workload” (Barker, McDowell & Kalahar, 2009). 

In this and her other work (Garvin-Doxas & Barker, 2004), Barker attempts to direct 
computer science educators to practices that will support an inclusive and non-defensive 
climate within the computer science classroom. The juxtaposition of the goals of Barker’s 
research and the seeming acceptance and endorsement of “weed[ing] students out” suggests 
the prevalence of the belief in an innate aptitude for programming.   

In another example, Dehnadi (2006) bemoans the fact that students are not afforded 
the opportunity before college to be “streamed” into those that “can” and “can’t” be 
successful. 

“Part of the problem is that the subject is not widely taught at school, so 
undergraduates arrive without having being streamed into those who can do well and 
those who can't.”  (Dehnadi, 2006 p. 53) 

An important aspect of the language here is Dehnadi’s use of the words “can” and 
“can’t.” As a practical point we have computer science students that “are” and “are not” 
successful. However this subtle difference between “are not” and “cannot” appears to 
represents a core assumption of innate aptitude. 

Clayton Lewis (2007) investigated the prevalence of various beliefs amongst computer 
science professors and students. He found that 10 out of 13 professors surveyed rejected the 
statement “Nearly everyone is capable of succeeding in the computer science curriculum if they 
work at it.”   

 In my related research, I have documented students’ beliefs about whether or not 
computer science ability is innate and how the environment of an introductory programming 
class shapes these beliefs (Lewis, Yasuhara, Anderson, 2011). There was variation between 
participants’ beliefs; some participants rejected and some students endorsed the existence of 
an innate ability for computer science. There were cases in which participants endorsed the 
existence of an innate ability that demonstrated how this belief can discourage persistence and 
exclude students that are underrepresented within computer science. The student quoted 
below attributed the idea that computer science ability is innate to her introductory computer 
science professor. I interpret her statements as suggesting that students’ difficulty in computer 
science can be attributed to an unchangeable lack of innate ability. She said:  
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“Even my [UA-CS2 professor] told us that some people are just born that way, with that 
mental outlook that is compatible with CS… They feel it’s so easy for them... Yeah, and 
he told the rest of the people that some of you will try but some of you won’t get it, and 
it’s just that your mental outlook isn’t made that way. It’s something you’re born with. 
You can’t help it” (p. 6, Lewis, Yasuhara, & Anderson, 2011) 

 Another Participant in this study said that she thought female students might be less 
innately abled at computer science and said that few women in the field might be evidence of 
this lack of an innate ability (Lewis, Yasuhara, & Anderson, 2011).  

Based upon research from Dweck and her colleagues (see Dweck & Leggett, 1988 for a 
review) and Steele and his colleagues (Steele, 1997; Carr & Steele, 2009) there are negative 
consequences for students when their success or lack of success is framed as indicative of 
innate aptitude.  

Carol Dweck and colleagues (e.g., Dweck & Leggett, 1988) have researched how 
students behave when reasoning with a fixed or growth mindset. A fixed mindset views 
intelligence as static while a growth mindset views intelligence as malleable.  For example, 
when students read a passage where intelligence was defined as innate, the students were less 
likely to choose challenging tasks than students who were presented with a text that defines 
intelligence as malleable (Dweck & Leggett, 1988). If students come to believe that there exists 
an innate aptitude for computer science they may adopt a fixed mindset, which can stifle their 
academic growth (Dweck & Leggett, 1988; Simon et al., 2008).  

Claude Steele and his colleagues (Steele, 1997; Carr & Steele, 2009) have identified a 
related phenomenon named stereotype threat. Consider the stereotype of women being bad at 
math. Spencer, Quinn and Steele (1999) gave two groups of men and women a math test. The 
first group was told that the test was diagnostic of ability and that women tended to perform 
poorly on the test. The second group was told that the test was not diagnostic of ability and 
that men and women tended to perform equally well. In this and other studies (e.g. Steele & 
Aronson, 1995), the stereotyped group performed less well than their non-stereotyped peers 
only in the group that was told that the test was diagnostic of ability.  

Steele (1997) explains that when members of a stereotyped group come to believe that 
a stereotype could be used to interpret their performance, their behavior tends to reinforce the 
stereotype. It is not necessary that an individual believes the stereotype to be true, only that 
the stereotype is activated and reflects upon a domain with which he or she is identified 
(Steele, 1997). This phenomenon has held for stereotypes of the intellect of black students 
(Steele & Aronson, 1995), stereotypes of the intellectual inferiority of white males to Asian 
males (Aronson et al., 1999) and stereotypes of white people as racist (Goff, Steele, & Davies, 
2008). Therefore if students who are invested in their success in computer science believe that 
stereotypes of their abilities in computer science are relevant, their performance may be 
artificially depressed.  
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Opportunities 
The research in this dissertation sits at a crossroad of opportunity. Below I discuss how 

the proposed research takes advantage of the frequently late introduction of computer science, 
builds upon successful research and pedagogy efforts in physics education, and capitalizes on 
previous research that has identified central multiple-choice computer science problems 
(Reges, 2008) in the highly interconnected domain of computer science (Robins, 2010).  

Late Introduction to Computer Science 
 Few students have the opportunity to learn computer science before attending college. 
Unlike other intellectual domains, such as mathematics or history, many students’ first 
introduction to computer science is in college. Certainly some students have access before 
college, but the inequality of access then creates a heterogeneous population of students with 
prior experience at the college level. For example, in 2010, only 19.2 percent of the Advanced 
Placement Computer Science (AP CS) test takers were female (The College Board, 2011). In 
2010, this was the lowest ratio of female-to-male test-taking rates of any of the offered 
Advanced Placement tests. AP CS courses are not the only computer science courses offered at 
the pre-college level, but the data regarding test-taking patterns for the AP CS exam suggest 
that female students will be overrepresented in the population of students that do not have 
programming experience before college, which has been observed at the University of 
California, Berkeley (Lewis, Titterton, & Clancy, 2012). 

 As documented by Margolis and others (Margolis et al., 2008) few students have 
experience learning computer science before college. However, with this missed opportunity of 
early learning comes a unique opportunity for educational research. As an educator and an 
educational researcher I often work with students who are first learning computer science in 
college and therefore I have the opportunity to observe students engaged in learning within a 
domain for which they are both ignorant and potentially well prepared by their other academic 
experiences. However, some students with what we believe to be adequate preparation and 
motivation are not successful. We do not know what academic experiences would enable 
someone to be well prepared for the learning of computer science.  

Evidence of Success in Other Domains 
The proposed research follows a long line of research investigating prior knowledge 

from other domains (diSessa, 1993; diSessa & Sherin, 1998; Wittman, 2001; diSessa & Wagner, 
2005; Wagner, 2006; Parnafes, 2007; Levrini & diSessa 2008; Hammer, 2000; Russ & Sherin, 
2008) and developing transformative pedagogy (diSessa & Minstrell, 1998). This prior work 
provides methodological examples of how to identify students’ knowledge resources and 
beliefs that play a role in learning. More generally these researchers engage in the enterprise of 
studying conceptual change and attempt to understand the dynamic process of thinking and 
learning in the domain of physics. The current study builds upon this work to consider 
conceptual change within computer science education.   



www.manaraa.com

 Introduction  

 6  
 

Questions Central to Computer Science Competence 
Robins (2010) presents a similar critique of the computer science community’s 

assumptions of the existence of an innate aptitude for programming. He claims that this 
assumption is fueled by instructors’ experience of a bimodal distribution of student grades in 
introductory programming courses. While Dehnadi (2006) claims that this bimodal result is 
because the course separates “those who can do well and those who can't”  (Dehnadi, 2006 p. 
53), Robins (2010) claims that it is the highly connected nature of the domain of computer 
science that produces the bimodal distribution. Robins (2010) builds a constructivist model of 
learning, such that a student’s failure to grasp a concept early in the course negatively 
influences his or her chance of understanding later concepts. Building this alternate assumption 
into a computational model, Robins (2010) was able to simulate the bimodal grade distribution 
patterns observed by instructors. From Robins’ (2010) work, I take the hypothesis that 
computer science may be a highly interconnected domain. From this hypothesis, I attempt to 
identify questions that capture central connections in the domain and turn to the work of Reges 
(2008) to identify some such questions. 

Reges (2008) analyzed results from the 1988 AP CS exam.  He found that five multiple 
choice questions accounted for the majority of the pair-wise correlations between multiple 
choice and free-response questions on the exam. Reges (2008) frames the question exposed by 
his research in the following quote.  

“do [the highly correlated questions] measure a fundamental ability that some people 
have more than others? If so, can that ability be effectively tested before a student 
takes a course?” 

Using clinical interviews I captured novice programmers’ answers to these highly-
correlated questions from the 1988 AP CS exam. However, this dissertation does not seek to 
answer the question of whether “a fundamental ability that some people have more than 
others” can be “tested before a student takes a course.” Instead I see to answer the question of 
whether as educators we can help students develop that ability.  Instead of investigating a 
static “fundamental ability” I investigate whether these questions may measure teachable 
competencies that may be identified and explored by analyzing how students reason about 
these questions.  

Dissertation Overview  
In response to the lack of factors that can predict success learning to program, I 

hypothesize that students’ success is shaped not simply by having a particular non-
programming competence, such as a skill or set of skills from math, but the degree to which 
students make productive use of their non-programming competence when learning to 
program. The goal of this dissertation is to investigate the hypothesis that students have out-of-
domain knowledge that is relevant to the learning and doing of computer programming and to 
develop hypotheses about the content and function of that out-of-domain knowledge. 

 An emphasis throughout the dissertation is novice programmers’ understanding of 
computer program state because it is a language independent description of some of the key 
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competencies of programming. Computer program state is the set of all information calculated 
and maintained by the machine when executing a program. This includes user-defined 
variables, arguments to functions, return values from expression and sub-expressions, and 
stack information such as the program counter and nesting of function class. Numerous 
researchers have emphasized the importance of program state (du Boulay, O'Shea, & Monk, 
1989; du Boulay, 1989; Shinners-Kennedy, 2008; Papert 1980; diSessa, 2000; Cooper, Dann, & 
Pausch, 2000).  

The analysis chapters each provide an additional perspective on novice programmers’ 
reasoning about computer program state. These analyses were inspired by observations of 
competence amongst the research participants. Upon documenting these competencies, I 
evaluated various analytic tools for exploring the nature and source of the competence.  

 This data collection and much of the analysis is informed by the Knowledge in Pieces 
theoretical framework. The following Theoretical Framework chapter provides an overview of 
relevant details from the Knowledge in Pieces theoretical framework. This includes two models 
of knowledge that I apply within my analysis and based upon analysis I extend and refine. The 
first theory is a model of a particular type of conceptual knowledge referred to as coordination 
class theory (diSessa & Sherin, 1998) and the second theory is a model of a type of intuitive 
knowledge referred to as p-prim theory (diSessa, 1993).  
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THEORETICAL FRAMEWORK 
 This chapter provides details regarding the Knowledge in Pieces theoretical framework, 
which has shaped the data collection and analysis in this study. I begin with background 
regarding the enterprise of theory development particular to the Knowledge in Pieces 
theoretical framework. Next I present details of Knowledge in Pieces including the foundational 
epistemological commitments and a theoretical model of a particular type of concept, referred 
to as a coordination class. All of the analysis in this dissertation is built upon these 
epistemological commitments and the first analysis chapter applies coordination class theory to 
computer science for the first time. This section is intended to provide relevant background 
regarding Knowledge in Pieces, coordination class theory, and the style of research and theory 
development undertaken in this dissertation.  

Theory Development 
While someone might colloquially say that an individual has a concept, this everyday 

notion of a “concept” specifies very little about the individual’s knowledge. Researchers 
contributing to the Knowledge in Pieces theoretical framework develop models of learning and 
knowing that go beyond typical dictionary definitions. To introduce the content of these models 
I separate the features of knowledge that are described as either about the observable 
behavior, content and form, or dynamics of a person’s knowledge. This is not a traditional 
segmentation of the research, but attempts to highlight the scope and focus of Knowledge in 
Pieces research.  

I define the observable behavior of knowledge as the observable aspects of an 
individual’s knowledge. This includes coarse measures such as whether or not an individual 
answers a question correctly. This also includes subtle features in the content of an individual’s 
explanation or answer to a question, such as the details of their solution path. The behavior of 
an individual’s knowledge is a typical focus of educational research. This is an important aspect 
of knowledge to emphasize, but this study and others within the Knowledge in Pieces line of 
work shift the focus to the content, form, and dynamics of an individual’s knowledge.  

Work from within the Knowledge in Pieces line of work emphasizes these two other 
aspects of knowledge: the content and form of knowledge and the dynamics of knowledge. 
Specifying the content and form of knowledge is primarily a theoretical task in which the 
researchers attempt to build a model of the types and properties of an individual’s knowledge. 
Developing a model of the content and form of knowledge goes hand in hand with developing a 
model of the dynamics of knowledge. I define the content and form of knowledge as the 
content of specific knowledge and hypothesized forms of this knowledge while the dynamics of 
knowledge specifies how various knowledge resources interact to produce the observable 
behavior of knowledge.  

Specificity in the definitions of these terms and predictions of the model is necessary to 
provide for the possibility of rejecting or identifying necessary changes in the theory presented. 
To discuss and develop theories that specify the content, form, and dynamics of knowledge it is 
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not sufficient to use everyday labels of knowledge such as “concept” or “understanding.” These 
everyday labels of knowledge are too coarse to describe the content, form, and dynamics of 
knowledge that could produce the diversity of behavior observed. A major emphasis in 
coordination class theory is to move beyond typical definitions of terms for describing learning. 
In particular, coordination class theory is specific about what it means to have a particular 
concept.   

The current study, and much of the work that has adopted the Knowledge in Pieces 
theoretical framework, attempts to develop theories of learning. The Knowledge in Pieces 
theoretical framework is comprised of a number of overlapping theories of learning. These 
theories are informed by observing individuals’ reasoning about various situations. From these 
data, models regarding the content, form, and dynamics of knowledge are developed to match 
the observed data. These models are the primary component of the theories of learning and 
are taken as works in progress that are continually refined (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003). For example, a model of a particular type of concept, referred to as a 
coordination class, has been continually expanded and refined by subsequent studies (diSessa 
& Sherin, 1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Parnafes, 2007; Levrini 
& diSessa 2008) These continually refined models, which are often referred to as theories, are 
different from the commonly referenced theories in physics. In physics, theories are typically 
static and infrequently questioned. The theories in the Knowledge in Pieces line of research can 
be seen as earlier in the process of theory development. In this line of work, theories are 
intended to be developed, scrutinized, extended, and refined. This iterative process of 
development both changes and improves these theories (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003).  

Epistemological Commitments 
While the theories that comprise the Knowledge in Pieces theoretical framework are 

actively refined, there exist some conclusions regarding the content, form, and dynamics of 
knowledge that are shared by researchers who apply this theoretical framework. I preface my 
introduction of coordination class theory by identifying some of these common epistemological 
commitments in research using the Knowledge in Pieces theoretical framework.   

I will refer to the components of an individual’s knowledge as knowledge resources. 
While the language varies between researchers (diSessa, 1993; Hammer, Elby, Scherr, & Redish, 
2004), these knowledge resources are not assumed to be encoded in a uniform way (diSessa, 
1993). As an illustration of the diversity of encodings, I will describe two possible encodings of 
knowledge that govern the opening of jars. As a first example, I can easily recall and interpret 
the phrase “righty-tighty, lefty-loosey.” Individuals may have factual knowledge like this 
encoded as a particular phrase. This can be seen as a different type of knowledge than the 
knowledge I use when I, without recalling the phrase, reach to untwist a jar lid. We can think of 
these two knowledge resources as being of a similar grain size because they both govern the 
opening of jars, but they are almost certainly encoded in different ways. It is likely that the first 
is primarily encoded as a phrase while the second is primarily encoded as what would 
colloquially be referred to as muscle memory.  
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 In addition to assuming a diversity of encodings of knowledge resources, the Knowledge 
in Pieces theoretical framework specifies that various knowledge resources can work together 
to produce more complex competence (diSessa, 1993). This implies that reasoning patterns 
that can be observed in behavior are sometimes supported by not just a single knowledge 
resource, but a network of knowledge resources. “Knowledge in Pieces” refers to this network 
of knowledge resources that are assumed to support everyday and scientific reasoning. For 
example, compare the knowledge resources to open a jar with the knowledge resources 
involved in a more complex task such as replacing the brakes on a bicycle. We can see this more 
complex task as requiring more knowledge than is necessary to open a jar. Replacing the brakes 
on a bicycle may even require some subset of the knowledge needed to open a jar. While we 
could model this as a single knowledge resource with larger scope, it might better be described 
as, itself, a collection of knowledge resources.  

For a non-expert, the application of these knowledge resources is frequently described 
as an emergent process and that the dynamics of knowledge and the details of the situation 
influence the particular application of knowledge. This can result in the observable fact that the 
knowledge an individual applies in a context may vary and can explain a lack of coherence that 
has been observed in various studies of novice knowledge (Kahney, 1989; Vosniadou & Brewer, 
1992). For example, Kahney (1989) found that some students were inconsistent in their 
predictions of the behavior of recursive function calls. While many researchers presume that 
students have definite models of particular concepts (see diSessa, 2006), this does not explain 
some of the behavior of students’ knowledge such as answering correctly on one question 
while seeming unable to produce the same performance on another question. This can be 
explained by the presence of a diversity of knowledge resources, which are not uniformly 
applied to produce expert performance. 

In the Knowledge in Pieces theoretical framework (diSessa, 1993), whether or not a 
piece of knowledge is accessed by an individual in a context is referred to as whether or not 
that piece of knowledge is cued or activated. This construct of cueing was introduced to 
describe the relative priority of a type of intuitive knowledge within an individual’s knowledge 
system (diSessa, 1993), but has not been used in coordination class theory research. A 
description of this type of intuitive knowledge will be provided later in this chapter. I reference 
it here only to note that I will apply this language of cued and activated to discuss a greater 
diversity of knowledge resources because it is consistent with the epistemological 
commitments of coordination class theory.  

Each knowledge piece can be thought to have a particular priority of cueing for each 
context, referred to as its cueing priority. Knowledge can be cued by elements in the external 
environment or be part of a network of closely connected knowledge elements that are cued 
together. Cueing priority might be viewed as a measure of an individual’s unconscious 
assumption regarding the applicability of that knowledge in a context. This explains some 
examples of failure of transfer, where an individual has demonstrated use of some knowledge 
that they appear to not apply in a new context (diSessa & Wagner, 2006).  Knowledge that is 
cued is available to the individual, but the individual may decide that the knowledge is not 



www.manaraa.com

 Theoretical Framework  

 11  
 

relevant to a particular context. This phenomenon is analyzed in previous research (diSessa & 
Sherin, 1998; Wagner, 2006) and my first analysis chapter.  

 A specific instantiation of this idea of diversity of encodings and network of knowledge 
can be found in diSessa’s model of intuitive knowledge (1993). This exemplifies a final 
epistemological commitment that individuals’ everyday knowledge interacts with academic 
knowledge in individuals’ reasoning. diSessa (1993) identified a class of knowledge resources 
that he referred to as phenomenological primitives, or p-prims. P-prims are hypothesized to be 
a primitive knowledge resource in an individual’s knowledge system, meaning that p-prims are 
not composed of more primitive knowledge resources. P-prims are phenomenological, meaning 
that they relate to physical phenomena in the world. P-prims are presumed to be responsible 
for some of individuals’ expectations regarding physical phenomena. For example, diSessa 
(1993) identified and labeled Ohm’s p-prim as the knowledge resource responsible for the 
intuition that you have to work harder to push a heavy shopping cart than to push a light 
shopping cart. diSessa (1993) schematized this intuition from Ohm’s p-prim as that “[a]n agent 
or causal impetus acts through a resistance or interference to produce a result” (p. 217, 
diSessa, 1993). This intuition relates to Ohm’s law: instead of relating voltage, current, and 
resistance, Ohm’s p-prim relates effort, result, and resistance.  

In summary, the Knowledge in Pieces theoretical framework assumes that students 
have a diverse set of knowledge resources available to them, which includes knowledge from 
in- and out-of-school settings. These knowledge resources interact to produce individuals’ 
observed behavior and these knowledge resources are assumed to be varied in encoding. 
Depending upon details of the situation an individual may invoke different resources.  

Coordination Class Theory and Theoretical Constructs  

The Function of Coordination Classes 
In everyday use there is a diversity of things that count as concepts. For example, we 

could label “surface area,” “chair,” and “love” all as “concepts.” These are each different ideas 
with different ways of knowing. Certainly the way in which individuals could demonstrate that 
they have the concept of “surface area,” “chair,” and “love” differs between these three 
concepts. For example, an expert with the concept of surface area might be able to identify the 
surface area of various objects while an expert with the concept of chair may be able to identify 
whether various items are in fact chairs. As a rough approximation, expertise with surface area 
involves measurement and calculation while expertise with chairs involves classification. 
Measurement and calculation are dissimilar in many ways to classification. I will not speculate 
how an expert with the concept of love might demonstrate that expertise, but it is likely 
different than the competence associated with “surface area” or “chair.” This motivates why 
moving beyond colloquial terms for learning such as “concept” may provide clearer and more 
coherent constructs for theories of learning.  

Given the difference in how these competencies are demonstrated, it may be inaccurate 
to assume that the development of these concepts is uniform or that the dynamics of use of 
these concepts is uniform. diSessa and Sherin (1998) specified that a coordination class is a 
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model of only a particular set of concepts in an attempt to model concepts that have more 
uniform development and dynamics of use. Therefore, coordination classes do not include 
everything that would colloquially be referred to as a concept, but instead a set of concepts 
that are expected to be more similar in development and use. Including only a subset of all 
possible concepts allows for greater coherence between examples of coordination classes. The 
operational definition of a coordination class requires that the concept have a particular 
functional role in the individual’s reasoning, which I elaborate below.  

Before describing the general qualifications for what concepts are classified as a 
coordination class, I will describe a few examples of coordination classes. The canonical 
coordination class discussed by diSessa and Sherin (1998) is force. They specify that the primary 
function of this coordination class is to precisely identify forces in the world. This includes 
identifying components of those forces such as position, direction, and magnitude. In this case, 
each of these components is also a separate coordination class. For the coordination class of 
position, the primary function is to precisely identify positions in the world. Identification of 
positions could take place in the physical space or within a representation of space such as a 
graph. These examples are intended to show that applying a coordination class can involve 
identifying a complex set of information, such as the components of force, and possibly doing 
so across contexts, such as physical space and graphs.  

A coordination class is a model of knowledge in which the primary function of the 
coordination class is to identify a type of information in the world, like force in the previous 
example. Throughout the description of coordination classes, I will draw on examples from the 
coordination class of surface area. It follows from the definition of coordination classes that the 
primary function of the coordination class of surface area is to identify surface areas in the 
world. Surface area will be discussed here as a simple example. 

Coordination classes, unlike p-prims, are not assumed to be primitive knowledge 
resources. In fact, coordination classes refer to the collection of knowledge resources that work 
together to produce a particular competence. The model of coordination classes specifies that 
these component knowledge resources form connections that govern what knowledge is used 
together. 

Coordination and Problems with Span and Alignment 
Coordination class theory characterizes learning as a process of coordinating what 

knowledge should and should not be applied within a context (diSessa & Sherin, 1998). 
Coordination class theory specifies two main challenges in this process of coordinating 
knowledge.  

The first main challenge is an issue of alignment, which is essentially a measure of 
whether an individual can correctly determine the relevant information of the coordination 
class (diSessa & Wagner, 2005). This requires that for a given context, the individual correctly 
determines the focal information of the coordination class. Sometimes there may be multiple 
ways of determining the focal information. Alignment describes cases in which the individual 
correctly determines the focal information regardless of the method and knowledge employed. 
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For example, there may be two ways to determine surface area, each using different 
knowledge resources. An individual has adequate alignment in a situation if when using either 
method he or she arrives at the same correct answer (diSessa & Wagner, 2005).  

The second main challenge relates to the difficulty of recognizing the relevance of 
knowledge across contexts, which is referred to as problems with span. Consider the following 
three examples of student difficulties in applying a coordination class. The first two are 
examples of a problem of span, while the third is an example of a problem with alignment.  

 The individual incorrectly believes that his or her relevant knowledge is not applicable 
in the given situation (lack of span). 

 The individual recognizes the relevance of his or her knowledge, but does not know 
how to identify the information in the given situation (lack of span). 

 The individual believes that he or she has relevant knowledge, but he or she identifies 
the information incorrectly in the given situation (lack of alignment).  

Research using the Knowledge in Pieces theoretical framework typically focuses on 
individuals that could be considered novices in the topic domain. However, coordination class is 
the label for the expert form of knowledge, which appropriately uses knowledge resources to 
produce the desired competence. Therefore, in a true coordination class, this is to say, in the 
knowledge system of an expert with that particular concept, different types of knowledge work 
together to accurately identify the focal information across all applicable contexts. A 
coordination class is an ideal. We cannot demonstrate that an individual possesses this 
knowledge, we can only identify individuals that do not possess this coordination class by 
demonstrating problems of span or alignment.  

An individual that has sufficient span and alignment in some context could be described 
as having appropriate coordination in that context. Appropriate coordination is a determination 
of the performance of an individual’s knowledge in a particular context and does not imply that 
the individual would have appropriate coordination across all contexts. Thaden-Koch, Dufrense 
and Mestre (2006) introduced the term “coordination system” as the name for a less than 
complete coordination class. I will assume that the study’s participants have only coordination 
systems, but I will refer to these as coordination classes as is consistent with much of the 
previous literature (diSessa & Sherin, 1998; diSessa & Wagner, 2005). 

Readout Strategies and Extraction 
diSessa and Sherin (1998) define readout strategies as basic perceptual skills for 

extracting information from the world. For example, when presented with an object, an 
individual can hold the object and perceive its shape, size, color, texture, or weight. Each of 
these things that can be perceived is tied to a readout strategy. For example, perceiving color is 
a readout strategy. diSessa and Sherin (1998) refer to the perception that is generated with one 
of these readout strategies as a “readout.”  
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Actually, diSessa and Sherin (1998) also use the word “readout” to refer to a more 
expansive process of making inferences based upon gathering information using these readout 
strategies. For example, diSessa and Sherin refer to the process of making inferences when they 
claim that their subject was “reading out the amount of force” (p. 1179) and that the “issue is 
one of readout” (p. 1180). This double use of the phrase readout was not intended (A. A. 
diSessa, personal communication, April 3, 2012) and “readout” was intended to mean only the 
immediate product of using a readout strategy.  

For clarity, I will use the term “readout strategy” that has been used consistently, but 
will not use the term “readout.” I will refer to the result of using a readout strategy as an 
extraction, which is a term not previously used by coordination class literature. Extractions are 
made in reference to a particular object. A perception of an object’s color is an example 
extraction. Readout strategies are strategies that can produce a class of extractions. Readout 
strategies are general and are not specific to a particular object. Extractions are not general, but 
an application of a readout strategy in a particular context.  

An important aspect of the coordination class model involves the selection of ways of 
perceiving or extracting information about the world using these readout strategies. In general, 
we expect individuals not to be limited in executing necessary extractions (diSessa & Sherin, 
1998). However, an individual needs to use knowledge to determine what ways of perceiving 
(or readout strategies) may be relevant.  

An individual’s knowledge guides how he or she consciously or unconsciously selects 
readout strategies that are relevant to the context. For example, when asked to calculate the 
area of a surface, an individual may pay attention to the height and width of the surface and 
not the color, because he or she has some knowledge that height and width are relevant to 
surface area and color is not. However, without this inference he or she might not extract 
width, which is akin to not attending to that feature in the environment.  

Inferences, Causal Net, and Concept Projection 
Once an individual has extracted the height and width, he or she must now use other 

aspects of his or her existing knowledge, such as area = height * width, to make an inference or 
set of inferences to determine the surface area.  Inferences can be built from the information 
extracted from the world and from existing knowledge. These inferences are defined as taking 
place in the individual’s causal net, which is the term to describe the subset of an individual’s 
knowledge system that relates to the coordination class (diSessa & Wagner, 2005).  

Determining the surface area of a rectangle requires only one relatively simple 
inference. However, the process of applying readout strategies and generating inferences may 
be a much more complex, and possibly iterative, process. For example, when an individual 
calculates the surface area of a shape composed of various triangles and semi-circles, it might 
not be possible to extract all relevant lengths at once. A single extraction of the radius of one 
semi-circle may cause an inference that two semi-circles of equal size create a circle. This 
inference may redirect the individual’s attention to a new extraction, attempting to identify a 
semi-circle of the same size that could complete the semi-circle. This focused attention to 
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aspects of the environment can be conscious as well as unconscious (Thaden-Koch, Dufrense & 
Mestre, 2006).  

The subset of knowledge from the causal net that an individual uses to identify the focal 
information of the coordination class in one particular case is referred to as a concept 
projection (diSessa & Wagner, 2005). This includes their chain of inferences, the content of their 
extractions, and all knowledge that supported the final determination of the focal information. 
Some of this knowledge is used in a chain of inferences to guide the iterative extractions from 
the environment. These knowledge resources come from the individual’s causal net, which is 
the sum of the individual’s knowledge that is relevant to the coordination class and is not 
specific to any instance of reasoning.  

Figure 1 shows a representation of some of the components of the coordination class 
model of identifying the surface area of a 3 inch by 2 inch rectangle. As described above, the 
individual must extract this information from the environment using readout strategies and 
then develop inferences based upon those extractions and other knowledge. These inferences 
and the extractions together form an inferential chain, which in Figure 1 is modeled as being 
built from the top down. The concept projection is formed by this inferential chain and the 
readout strategies.  

 

 

 

 Width is 2 inches 

 Height is 3 inches 

 Equation for area is Area = Height x Width 

 3 x 2 = 6 

 The surface area is 6 inches2 

Extractions 

Inferences 

Inferential 
Chain 
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Figure 1. Graphical representation of the coordination class model of one concept projection 
for surface area. 

Conclusion 
 This section has attempted to motivate the use of non-colloquial terms to describe 
learning, to exemplify the type of theory refinement I undertake in this dissertation, and to 
familiarize the reader with coordination class theory and the epistemological commitments of 
the Knowledge in Pieces theoretical framework.  
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METHODS 

Participant Recruitment 
 Participants were recruited from the UC Berkeley courses described below via an email 
recruitment that was forwarded by their course instructor. The body of this email is shown 
below. 

Hello students in [fill in the course name here], 

You are invited to participate in a research project studying how people learn to 
program.  If you chose to participate you will be given a $15 Amazon.com gift card for 
an hour interview. You may be asked to participate in a second hour long interview. The 
interviews will take place in Soda hall or Tolman hall and will be scheduled at your 
convenience.  If you are interested in participating, please fill out the form at the 
following link and a researcher will contact you.  

http://www.eecs.berkeley.edu/~colleenl/interview/ 

Participation in this research will have no bearing on your standing in the class and your 
instructor will not know which students have chosen to participate.  

Thank you,  

Colleen Lewis (Graduate Student in Computer Science and Education) 

Interested students emailed me their preferred interview times from a list of available 
interview times listed online. Participants were scheduled on a first-come first-serve basis and 
all participants who emailed me to schedule an interview were interviewed.  

 Participants were given a $15 Amazon gift card for participating in the study. In 
instances where a participant was interviewed multiple times, the participant received one $15 
Amazon gift card for each interview.  

Participants 
Students enrolled in their first programming course were interviewed after they had 

completed the programming content that is comparable to the content tested on the interview 
questions. Each course from which students were recruited is described briefly below.  

CS10 – Scratch-Based Introductory Programming Course (9 students): The course “The Beauty 
and Joy of Computing” is the newest addition to UC Berkeley’s lower division curriculum  
(Garcia, Harvey, & Segars, 2012) and uses a modified version of the Scratch 
programming language (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) that adds 
functions and lambda (Harvey & Mönig, 2010). The course uses a modified lab-centric 

http://www.eecs.berkeley.edu/~colleenl/interview/
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structure (Titterton, Lewis, & Clancy, 2010) with two hours of lecture, one hour of 
discussion, and four hours of lab a week. 

CS3L – Scheme-Based Introductory Programming Course (6 students): UC Berkeley’s previous 
introductory course “Introduction to symbolic programming” using the Scheme 
programming language (Friedman & Felleisen, 1996) introduces students to basic 
control structures and recursion. The course uses the lab-centric instruction approach 
(Titterton, Lewis, & Clancy, 2010), which includes a single hour of lecture a week and six 
hours of lab.  

CS3S – Self-Paced Scheme-Based Introductory Programming Course (15 students): This course 
is “self-paced” and does not have required class meetings. Students have the option of 
taking a two- or four-unit version of the course. The four-unit self-paced version covers 
roughly the same content as CS3L. While interviews took place at the end of the 
semester, the content covered by individual students varied greatly. This was partially 
because of the self-paced nature – some students were behind – and partially because 
some students were only taking 2 units and were required to complete less content 
throughout the semester. Despite the differences in background, all students that were 
recruited from this class had seen the relevant content in their course. 

Data Collection 
Each participant was videotaped solving computer programming problems. The camera 

was focused on the paper and the area around the paper. The intention was to capture the 
students’ gestures when pointing to text from the problem and their inscriptions on the page. 
Each student’s body and face were not captured so as to provide higher resolution of these 
gestures and inscriptions. No demographic data was collected from participants.  

Sample Size 
Six students participated in the pilot round of data collection. All of these students were 

recruited from a single offering of CS3L. In the first phase of the research, interviews were 
conducted with seventeen students. Two of these seventeen participants were enrolled in CS10 
and fifteen participants were enrolled in CS3S. In the second phase of the research, interviews 
were conducted with seven students from the introductory programming course using the 
programming language Scratch.  

Students that had performed in the lowest quartile on the first exam in this class were 
recruited to participate in the second phase of interviews. Four of these students were 
interviewed more than once. During the first interview in phase 2, participants described how 
to solve each of the programming problems from the first exam that they had taken in CS10 the 
previous week.  

Some of my analyses consider individual participants while other analyses considers all 
participants from the pilot and first phase of data collection, all of whom answered the 
questions described in this chapter.  
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Interview Protocol 
During the interview, participants solved a series of problems and were asked to talk 

through their reasoning while they solved the problems.  My protocol was modeled on 
diSessa’s description of clinical interviewing (2007) and I provide details from my instantiation 
of these techniques here. From diSessa’s description of clinical interviewing I have applied the 
following principles:  

  

Before beginning the interview, the participant was provided and signed consent 
documents to participate in the research. The study was explained and any questions the 
participant had were answered. I explained to participants that I was interested in 
understanding how they thought about the problem and wanted them to talk aloud as they 
solved the problems. Participants in the pilot and the first phase of research who used the 
programming language Scheme were provided a warm-up question. Participants that used the 
programming language Scratch were not provided a warm-up question.  

The intent of the warm-up question, shown in Figure 4, was for students to practice 
talking through their reasoning while solving a problem. After completing this question, I 
provided encouragement to the interviewees either to continue talking through their reasoning 
as they had done or to increase how much they were talking through their reasoning.  

When solving the remaining problems, if a participant remained silent for an extended 
period of time, I prompted them to continue talking, for example by saying “what are you 
thinking?” If a participant asked a clarifying question about the problem, I redirected him or her 
to a relevant phrase within the text of the problem. If the participant provided an 
interpretation of the question and asked for confirmation, I provided confirmation if his or her 
interpretation was correct or redirected the participant to a relevant phrase within the 
provided question if his or her interpretation was not correct. 

I attempted to avoid providing additional information to the participant or any 
indication to the participant regarding whether or not his or her answer was correct.  For 
example, if a participant asked if an answer was correct, the interviewer frequently responded 
by redirecting the question back to the participant, for example by saying “What do you think?”  
The goal of this strategy was to provide additional insight into the participant’s reasoning and 
to avoid providing additional resources such as whether or not their answer was correct.  

After a student solved a problem, I frequently asked follow-up questions to attempt to 
better understand his or her reasoning. For example, occasionally I repeated back a statement 
the participant had said while solving the problem and asked what was meant by that 
statement. Similarly, I occasionally identified an element of a representation created by the 
participant and asked what that element meant or represented.   

Occasionally these follow-up questions led the student to identify a mistake he or she 
made in solving the problem; however, the follow-up questions were intended only to clarify 
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some aspect of the participant’s reasoning that was perceived by the interviewer as ambiguous. 
These questions were not intended to serve as tutoring or to support the participants’ 
reasoning. The student was not told if the answer to a question was correct or incorrect and 
was permitted to move onto the next problem regardless of whether he or she had answered 
the question correctly.  

Analysis Methods 
 Analysis methods that were specific to an individual chapter are discussed within that 
chapter. The description of analysis methods described here are those that are applicable 
across the dissertation.  

 After each interview brief notes were taken regarding the content and quality of the 
interview. In particular I recorded my estimation of the quality of the interview for further 
analysis based upon the participants’ relative comfort during the interview and the extent to 
which they were able to articulate their reasoning. These notes determined the order in which I 
viewed the videos, viewing first the videos of participants that appeared comfortable and were 
articulate about their reasoning. This may bias the results toward the reasoning of the more 
articulate participants because those interviews were watched first. However, in identifying 
case studies focusing on articulate students is necessary to provide the density of data 
necessary for careful analysis. All of the videos were watched and some of the analysis includes 
an analysis of all participants that answered particular questions.  

 After all data was collected from Phase 1, data analysis began by viewing these videos. 
This analysis continued during the collection of videos from Phase 2. Videos were watched from 
start to finish, pausing the video to take notes about relevant details and episodes. For 
example, a short summary of each participant’s solution to each problem was recorded in 
addition to detailed notes regarding particular episodes. Episodes of interest were those in 
which a student appeared to be using a technique to reason about a problem where that 
technique was not specific to computer science. For example, I documented cases where 
participants used various forms of representation, used general test-taking strategies such as 
re-reading the question or working backwards from the answer options, rephrasing the 
question or program text in their own words, or performed calculations similar to mathematics 
calculations. In many cases the technique was not apparent and in others their technique 
seemed dominated by computer programming specific content knowledge. My records of these 
episodes of interest included the participant’s identifier, the interview problem, the time within 
the interview, a short summary of the participant’s behavior and reasoning, and the reason for 
my interest in this episode.  

 These episodes were documented on index cards and these index cards were sorted 
into clusters to attempt to identify relevant patterns within the data. Individual cases from 
these clusters were selected for further analysis. These cases were transcribed and descriptive 
memos were written for each to attempt to explain the content of that episode.   

 Additional details regarding the analysis methods are provided in the relevant analysis 
chapters.  



www.manaraa.com

 Methods  

 21   
 

Recursion Background  
The following section provides a detailed description of the focal interview questions 

and essential background information regarding recursion. Readers familiar with recursion may 
prefer to read the interview problems without the accompanying text that describes recursion 
and the problem solutions.   

Two of the interview questions refer to a single recursive function and I will use this 
recursive function to introduce recursion in general. I will begin by describing the underlying 
recurrence relationship from the questions, shown in Equation 1. Equation 1 shows an equation 
relating exponentiation to repeated multiplication. For example, if the variable n is 3 and the 
variable x is 5, the equation in Equation 1 becomes 53 = 5*52.   

          

Equation 1. Recurrence relationship from the sample problem. 

Equation 1 is a valid expression for representing an exponent to the power of one or 
higher. Equation 2 shows an expression for calculating the value of the variable x raised to the 
first power.  This type of non-recursive expression in Figure 3 is typically referred to as a start 
condition in mathematics or a base case in computer programming (Leron & Zazkis, 1986).  

     

Equation 2. Base case from the sample problem.  

Figure 2 shows a representation of the recurrence relationship from Equation 1 and 
base case from Equation 2, in the programming language Snap (Harvey & Mönig, 2010), which 
is a variant of Scratch (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).  

  

 

Figure 2. Implementation of recurrence relationship from Equation 1 and base case from Equation 2 in Snap 



www.manaraa.com

 Methods  

 22   
 

The function shown in Figure 2 takes two arguments, which are set to the values of the 
variables x and n. For example, if we call the function with the arguments 4 and 2, the value of 
the variable x would be set to 4 and the value of the variable n would be set to 2. This function 
call would be made by double clicking on the expression shown in Figure 3. 

 

Figure 3. A Snap function call provided the arguments 4 and 2. 

If the value of the variable n is 1, the behavior of the program in Figure 2 is equivalent to 
calculating x to the first power (or x1) as shown in Equation 2. The test for “if n equals 1” and 
the result of setting the answer to the value of x appears in the first half of Figure 2. For any 
value greater than 1, the variable named “answer” is set to the result of the algebraic 
expression x*xn-1. This calculation is shown in the second line of the program in Figure 2 that 
begins “set answer.” This requires multiplying the value of x, which is a known quantity, by the 
unknown quantity xn-1. This unknown quantity can be determined by calling the function again. 
This is equivalent to using the mathematical representation shown in Equation 1 to calculate 
the value of x raised to the power of n. Then we use Equation 1 again to calculate the value of x 
raised to the power of n-1. In both uses of Equation 1, the value of n will be different, one less 
than the previous value of n.  

This process of sequentially executing the function with lower values of n continues until 
the new value of the variable n is 1. At this point the variable named “answer” is set to the 
value of x and is returned to the previous function call. For example, the call to the function in 
Figure 2 with the arguments 4 and 2 would make a recursive call with the arguments 4 and 1. 
This function call with arguments 4 and 1 would return the value of x, 4, to the previous 
recursive call. In that previous recursive call, this returned value would replace the recursive call 
that was made there.  

Interview Questions  

Warm-up Question 
The interviews in Phase 1 began with a warm-up question shown in Figure 4. Due to an 

omission in the preparation of materials, the two students who were enrolled in the Scratch-
based programming course were not given a warm-up question.  

What does (mystery 3 10) return? 

(define (mystery x y)  

 (+ 7 (* x 4) (* (/ y 5) (- x y))))  

Figure 4. Warm-up question used during interviews in Scheme 

After the interviewee answered the warm-up question, the interviewer provided the 
participant a stack of questions to answer with one question per page. The problems were 
multiple-choice format. Recall that these questions were the questions identified by Reges 
(2008) as those most highly correlated with success on the 1988 Advanced Placement 
Computer Science (APCS) exam translated into Snap and Scheme. These questions were chosen 
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because they would align the interview with content from the APCS curriculum and because 
these correlations may indicate that the questions tested a core competence that was relevant 
across many multiple-choice and free-response questions on the exam.  

Interview Question 1 – Tracing Question 
A variant of the program shown in Figure 2, with an obfuscated function name 

“WhatIsIt”, appeared on the 1988 Advanced Placement Computer Science (APCS) exam in the 
programming language Pascal. The interview participants were provided a version of this 
question translated into the programming language from their course. A version translated into 
Scheme is shown below in Figure 5.  A version in Snap with the original function name is shown 
below in Figure 6.  

The differences between these two representations of the same function may warrant 
curiosity regarding what differences in reasoning arise from these differences in programming 
language. In the data collected, there were no identifiable patterns of reasoning that separated 
participants who used each programming language. My hypothesis is that differences in 
participant reasoning caused by the programming language were insignificant compared to the 
variation between individuals. Given the lack of data, differences in representation will not be 
discussed further. For consistency and ease of reference, I will use the Scheme-based 
representation of functions and function calls for all inline references in the remainder of the 
dissertation.  

What value is returned by (WhatIsIt 4 4)? 
 

 (define (WhatIsIt x n) 

(if (= n 1) 

x 

(* x (WhatIsIt x (- n 1)))) 

 

A) 8   B) 16   C) 24   D) 64   E) 256 
Figure 5. The “Tracing Question”: a replication of a question from the 1988 APCS exam, translated to Scheme.  
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What value is returned by ? 

 

 
 

A) 8   B) 16   C) 24   D) 64   E) 256 

 

Figure 6. The “Tracing Question”: a replication of a question from the 1988 APCS exam, 
translated to Snap.  

The first question, after the warm-up question in Phase 1, asked students to calculate 
the value of (WhatIsIt 4 4). Throughout the dissertation I refer to as the tracing question.  

The call to (WhatIsIt 4 4) generates a call to (WhatIsIt 4 3) and multiplies the 
result of that by 4. This process is repeated and the value of the variable x is repeatedly 
multiplied. The correct answer from this set of calculations is 256 or 44. Figure 7 shows the 
recursive calls generated by the initial call to (WhatIsIt 4 4). The underlined portion on 

each line in Figure 7 is expanded in the next line to show the result of that recursive call. The 
final line shows the pending multiplications from the previous recursive calls and the value 
returned by the call to (WhatIsIt 4 1). 
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Figure 7. Recursive calls generated by a call to (WhatIsIt 4 4). 

Interview Question 2 – Infinite-loop Question 
The question shown in Figure 35 immediately followed the tracing question on the 1988 

AP CS exam and was the second interview question used in Phase 1. This question, which I refer 
to as the “infinite-loop question,” asked the student to reason about cases that do not create 
an infinite loop in the function WhatIsIt.  

Which of the following is a necessary and sufficient condition for the function WhatIsIt to 

return a value if it is assumed that the values of n and x are small in magnitude and are both 

whole numbers? 

A) n > 0  

B) n = 0  

C) n > 0 and x > 0 

D) x ≤ n and n > 0 

E) n ≤ x and n > 0 

Figure 8. The “infinite-loop question”: a replication of a question from the 1988 APCS exam. 

The function WhatIsIt will terminate when the value of n is 1. However, if the value 

of n never becomes 1, a call to WhatIsIt will result in an infinite loop, meaning it will never 

terminate. For example, if the function WhatIsIt is called with a value of n less than 1, as 
shown in Figure 46, the recursive call will never stop.  

(WhatIsIt  0) 

(* 4 (WhatIsIt 4 -1)) 

(* 4 (* 4 (WhatIsIt 4 -2))) 

(* 4 (* 4 (* 4 (WhatIsIt 4 -3)))) 

(* 4 (* 4 (* 4  (* 4 (WhatIsIt … 

Figure 9. Recursive calls generated by a call to (WhatIsIt 4 0). 

Interview Question 3 – Boolean Question 
The third question asked students to select an answer option that described a line of 

code. Translated versions of the question are shown below in Figure 10 and Figure 11. This 
question was the question most highly correlated with success on the 1988 APCS exam (Reges, 
2008).  

If b is a Boolean variable, then the function below has what effect? 
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(define (foo b) 

     (let ((b (equal? b #f))) 

     b)) 

A) It causes b to have value false regardless of its value just before the statement was 

executed.  

B) It always changes the value of b.  

C) It changes the value of b if and only if b had value true just before the statement was 

executed. 

 
Figure 10. The Boolean question in Scheme, a translated version of the question from the 1988 AP CS exam 

If  is a Boolean variable, then the statement below has what effect? 

 

A) It causes    to have value false regardless of its value just before the statement was 

executed. 

B)  It always changes the value of   .  

C) It changes the value of  if and only if  had value true just before the statement was 

executed. 
Figure 11. The Boolean question in Scratch, a translated version of the question from the 1988 AP CS exam 

   

 The Scheme equivalent of the question includes defines a function, using the syntax 
from the first line of Figure 10 “(define (foo b).” The argument to this function is “b,” 
which establishes the variable named “b.” This is necessary in the Scheme version because the 
participants from the Scheme-based courses did not yet have experience with persistent 
variables and only had experience using function arguments or “let” to create variables. 
Technically, by using “let,” the Scheme version also creates a new variable named “b” rather 
than modifying the initial variable, but this is merely a limitation of using a functional 
programming paradigm.  

 Despite the differences, both versions of the code can be described in the same way. 
They both always change the value of the variable “b,” which corresponds to multiple-choice 
option B. The expression tests if the initial value of the variable “b” is false. The result of this is 
set to be the new value of the variable “b.” If the variable “b” starts out with the value of 
“true,” then the test of whether it is equal to “false” will be “false” and the variable “b” will be 
changed from “true” to “false.” If the variable “b” starts out with the value of “false,” then the 
test of whether it is equal to “false” will be “true” and the variable “b” will be changed from 
“false” to “true.” 
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 The original version of the question included two additional multiple-choice options. 
These options were both incorrect. These stated that “It causes a compile-time error message” 
and that “It causes a run-time error message.” These multiple-choice options were not relevant 
for testing students using the programming language Scratch, where it is difficult to create 
syntactically invalid code. For consistency I removed both the Scratch and Scheme versions 
from the answer options presented to the participants regardless of what programming 
language they used during the interview.  

 Due to time constraints, participants’ solutions to this problem are not described in 
detail in this dissertation.  

Interview Question 4 – Wow Question 
The fourth question asked students to calculate the value of (Wow 16). The function Wow is 
shown below in Figure 12. 

The procedure call (wow 16) will yield as output which of the following sequences of 

numbers? 

(define (wow n)  

    (begin  

        (if (> n 1) 

          (wow (/ n 2))) 

        (show n))) 

A) 10 8 6 4 2  

B) 16 8 4 2 1  

C) 1 2 4 8 16  

D) 32 16 8 4 2  

E) 2 4 8 16 32 

 
Figure 12. The Wow question, a translated version of the question from the 1988 AP CS exam 

This function included an “if” that does not have a false case. Most of the students 
misinterpreted the expression “(show n)” as a false case for the “if.” This made it difficult to 
analyze participants’ understanding of the recursion and therefore participants’ solutions to 
this problem are not analyzed in this dissertation.  

Interview Question 5 – Multiplication Question 
The final question provides multiple-choice options to fill in the blanks in a function to 

recursively multiply two integers. The question shown in Figure 44 was provided to students 
using Scheme in their programming course and the question shown in Figure 14 was provided 
to students using Snap in their programming course. Each of these answer options specifies a 
distinct recursive function and below I explain the correct answer, option D, as well as the 
behavior of each of the incorrect answers. 
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Figure 13. Translated version of the multiplication question from the 1988 APCS exam in the programming language 

Scheme. 

 

Figure 14. Translated version of the multiplication question from the 1988 APCS exam in the programming language 

Snap. 

The question specified five options for completing the function mult; each option 

specified content for the true case for the “if” (statement 1) and the false case for the “if” 
(statement 2) for the function.  For example, Figure 15 shows the correct completed function 
specified by answer option D.  
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Figure 15. Correct version of the Mult function as specified by answer option D. 

Answer Option A (Incorrect)  
The recursive function specified by answer option A is shown in Figure 16 and is trivially 

incorrect. It does not specify a value for the false case of the “if” and therefore the mult 
function, as shown in Figure 16, only provides the correct answer when the value of x is 1. For 
all other values of x, the function does not multiply the values of the variables x and y.  

 

Figure 16. Incorrect version of the mult function as specified by answer option A. 

Answer Option B (Incorrect)  
Answer options B through E all provide the same value, y, for the base case, when x is 

equal to 1. This corresponds to multiplying the value of y by 1, which is always y.   A 
mathematical representation of this base case for options B through E is shown in Equation 3. 

       

Equation 3. Based case specified by answer options B through E for the multiplication question from the 1988 AP CS exam 

The function specified by answer option B is shown in Figure 17. 

 

Figure 17. Incorrect version of the mult function as specified by answer option B. 

The recurrence relationship from answer option B is provided below in Equation 4.  

    (   )  (   ) 

Equation 4. Incorrect recurrence relationship as indicated by answer option B 

(define (mult x y) 

 (if (= x 1) 

   y  

  (+ y (mult (- x 1) y)))) 

(define (mult x y) 

 (if (= x 1) 

   x*y)) 

(define (mult x y) 

 (if (= x 1) 

   y 

           (mult (- x 1) (+ y 1)))) 



www.manaraa.com

 Methods  

 30   
 

Equation 5 shows the recurrence relationship from answer option B expanded using 
algebra. From this expanded expression it is clear that x times y is not equal to the right hand 
side of the equation for all values of x and y and therefore that answer option B is incorrect.  

    (   )         

Equation 5. Expansion of incorrect recurrence relationship as indicated by answer option B 

Figure 18 shows the resulting recursive calls from a call to (Mult 4 4) as specified by 
answer options B. The correct answer to return from this function call is the product of 4 and 4, 
16.  Between each call the value of x is decreased and the value of y is increased. When x is 
equal to 1, the value of y is returned.  Therefore the final recursive call (mult 1 7) returns 
the value 7. 

 

Figure 18. Recursive calls generated by a call to (Mult 4 4) with answer option B. 

Answer Option C (Incorrect)  
The function specified by answer option C is shown in Figure 19. 

 

Figure 19. Incorrect version of the mult function as specified by answer option C. 

Equation 6 shows both the original recursive relationship specified by answer option C 
as well as a version expanded using algebra. The resulting calculation of 2y*(x-1) is clearly not 
equal to the product of x and y for all positive integer values of x and y.  

 

    (   )  (   )     (   )  

(define (mult x y) 

 (if (= x 1) 

   y 

           (mult (- x 1) (+ y 1)))) 
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Equation 6. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option C 

Answer C follows a similar pattern to the recursive calls generated by answer option B. 
Figure 20 shows a function call of (mult 4 4) to the function specified by answer option C. 

The value of x decreases by 1 with each recursive call and the value of y is doubled with each 
recursive call. When x is equal to 1, the value of y is returned. Therefore the final recursive call 
(mult 1 32) returns the value 32, not the correct answer of 16.  

 

Figure 20. Recursive calls generated by a call to (Mult 4 4) with answer option C. 

Answer Option D (Correct)  
The function specified by answer option D is shown in Figure 21. 

 

Figure 21. Correct version of the mult function as specified by answer option D. 

Equation 7 is a mathematical representation of the recurrence relationship from the 
correct version of the multiplication function. This demonstrates the property that 
multiplication can be represented as repeated addition.  

      (   )       

Equation 7. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option D 

The value of x decreases at each recursive call, but the value of y remains the same. 
Figure 22 shows that each recursive call, shown underlined and bolded, can be expanded based 
upon the second statement in answer D. The statement (+y (mult (- x 1) y)) adds 4, 
the value of y, to each successive recursive call. The final recursive call (mult 1 4) is 4, since 

the value of x results in it evaluating the base case. The base case returns the value of y to be 

(define (mult x y) 

 (if (= x 1) 

   y 

           (+ y (mult (- x 1) y)))) 
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combined with the previous pending sums. The diagram in Figure 22 shows how the repeated 
addition of 4 accumulates to result in the final calculation of 4+4+4+4.  

 

Figure 22. Recursive calls generated by a call to (Mult 4 4) with answer option D. 

Answer Option E (Incorrect)  
The function specified by answer option E is shown in Figure 23. 

 

Figure 23. Incorrect version of the mult function as specified by answer option E. 

The recurrence relationship from answer option E, shown in Equation 8, is nearly 
identical to that of the correct answer. The only difference is that the value y is multiplied by 
rather than added to a recursive call to the function. Instead of multiplying the values x and n, 
this function multiplies x by itself n times. In other words, it calculates x to the power of n. 
Recall that the first interview question involving the function WhatIsIt performed the same 
calculation. The only differences between the functions specified by answer option E and the 
WhatIsIt function are the names of the variables and the name of the function.  

      (   )    

Equation 8. Recurrence relationship for representing multiplication as repeated addition as indicated by answer option D 

Figure 24 shows a diagram parallel in structure to the one in Figure 22 for the function call 
(mult 4 4) for answer option E, which results in the value of 256 instead of the correct 
value of 16. 

(define (mult x y) 

 (if (= x 1) 

   y 

           (* y (mult (- x 1) y)))) 
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Figure 24. Recursive calls generated by a call to (Mult 4 4) with answer option D. 
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THE COORDINATION CLASS OF STATE 
 

“State management is the essence of programming. Every technique and tool in the 
programmer’s repertoire is concerned with supporting versatile and efficient 
management of the state space.” (p. 6-7, Shinners-Kennedy, 2008) 

Shinners-Kennedy argues that an understanding of state and state change operations is 
essential to successful programming and this argument has been made in many forms over the 
years. I define computer program state to include all values calculated and maintained by the 
machine when executing a program. This includes user-defined variables, arguments to 
functions, return values from expressions and sub-expressions, and stack information such as 
the program counter and nesting of function calls.  du Boulay and his colleagues (du Boulay, 
O'Shea, & Monk, 1989; du Boulay, 1989) developed a claim similar to Shinners-Kennedy 
through a focus on what they call the notional machine, which is essentially a description of 
how program state can be inspected and changed. du Boulay and his colleagues argue that 
students need a firm understanding of these properties of the machine to be successful in 
writing programs and also that teachers and instructional materials should make these 
properties explicit to students. Twelve years later, Ben-Ari (2001) reiterated the importance of 
students’ understanding of the notional machine and critiqued object-oriented programming 
languages for obscuring aspects of the machine.  These ideas about the importance of state 
have come to fruition through the design of programming languages such as Logo, Boxer, 
Scratch, and Alice and one notable pedagogical approach (Sajaniemi & Kuittinen, 2005; 
Sajaniemi, Kuittinen, & Tikansalo, 2008); however, there are a number of open questions about 
the nature of students’ knowledge about state.  

A number of programming languages have been designed with the goal of making state 
visible (Papert 1980; diSessa, 2000; Cooper, Dann, & Pausch, 2000) The researchers involved in 
the design and evaluation of the Alice programming language emphasize the importance of 
program state, particularly for understanding and debugging code (Cooper, Dann, & Pausch, 
2000; Dann et al., 2003; Powers, Ecott, & Hirshfield, 2007). They assert that “the source of 
confusion in figuring out what went wrong, in all but the most trivial code, is an inadequate 
understanding of the program's state.” (p. 109, Cooper, Dann, & Pausch, 2000). The design of 
the Alice programming language was informed by this emphasis on state; in the Alice 
programming language, commands can move the character’s position on the screen, literally 
making state visible. This is the same mechanism of making state visible as was developed in 
the programming language Logo (Papert, 1980).  

In response to the importance of state, Sajaniemi and Kuittinen (2005) have attempted 
to help students recognize common patterns of state change operations. Their pedagogy 
highlights the roles of variables in programs. They claim that 10 roles account for 99% of all 
variable roles used in introductory programming texts. In their more recent work (Sajaniemi, 
Kuittinen, & Tikansalo, 2008), they ask students to represent the state of an object-oriented 
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program at a moment in time. They use what details a student represents as an indication of 
what aspects of state that student believe to be important. They track how what details a 
student represents changes during a programming course. These findings focus on how 
students represent the relationships between methods, classes, and objects in object-oriented 
programming. 

While these researchers above argue for the pedagogical importance of program state 
and patterns in student learning, they do not investigate the nature of knowledge regarding 
programming state. Based upon the empirical work of Sajaniemi and Kuittinen (2005) and 
characterizations of the knowledge by du Boulay and his colleagues (du Boulay, O'Shea, & 
Monk, 1989; du Boulay, 1989), it appears that knowledge of state is assumed to be primarily 
factual in nature. I acknowledge that factual knowledge is important and possibly a prerequisite 
to competence with programming state, but I expect that expert knowledge of program state 
includes more than factual knowledge.  

Previous research that explores the nature of programming knowledge moves beyond 
fact-centric models of program state knowledge, but does not attempt to explain the moment-
by-moment interaction of knowledge. The first is diSessa’s work with differences in structural 
and functional knowledge of computer programming (1986). The second is the work of the 
BRACElet project, which has investigated a possible hierarchy of programming skills (Lopez, 
Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009). 

diSessa (1986) discusses two complementary models of individuals’ understandings of a 
programming environment. An individual can have elements of a structural model, which, like 
the idea of a notional machine (du Boulay, O'Shea, & Monk, 1989; du Boulay, 1989), is a precise 
model for the state change operations in the system. An individual can also have elements of a 
functional model, composed of particular ways of accomplishing things in the programming 
environment. diSessa (1986) highlights the need for mutual bootstrapping between these two 
types of models. A structural model alone provides a barrier to early learning and is unlikely to 
support “fluid interaction with the system” (p. 205, diSessa, 1986). A functional model may 
support fluid interaction, but alone does not provide the necessary knowledge for debugging a 
program line by line. While facts are necessary for both a structural and functional model the 
distinction between functional and structural knowledge is independent of whether this 
knowledge can be classified as factual.  

Researchers on the BRACElet project have set out to achieve a similar goal of 
meaningfully segmenting programming knowledge (Lopez, Whalley, Robbins, & Lister, 2008; 
Venables, Tan, & Lister, 2009). In contrast to diSessa’s model of a mutual bootstrapping process 
between different types of knowledge (1986), these researchers claim that there exists a 
hierarchy of programming skills. The methods employed in the BRACElet project are primarily 
quantitative, based upon students’ responses to code writing, tracing, and explaining tasks. 
They identify knowledge of basic programming constructs as at the bottom of the hierarchy and 
writing code at the top.  
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The BRACElet project researchers draw these conclusions based upon patterns of 
students’ responses to the questions that test these competences, and their data suggest the 
existence of a hierarchical dependency. However, the same patterns would be present if the 
questions testing skills at the top of this hierarchy were coincidentally the most difficult. 
Existing models have made important theoretical contributions to understanding the domain, 
but do not provide the granularity to explain moment-by-moment dynamics of individuals’ 
reasoning about program state.  

These models are the state of the art in computer science education, but models of 
knowledge in other domains are more ambitious regarding moment-by-moment analysis of 
individuals’ reasoning (e.g., diSessa, 1993; diSessa & Sherin 1998) 

To contribute to our understanding of the nature of computer programming knowledge, 
I show how a formal model of a particular type of concept applies to the learning of computer 
programming. Previous research from physics education (diSessa & Sherin, 1989) developed a 
theoretical model for a particular type of concept that the authors refer to as “coordination 
classes” (diSessa & Sherin, 1989). The details of this theoretical model were described in the 
theoretical framework section. This model stipulates that a coordination class is used by 
individuals to identify some focal information in the world. For example, in the case of the 
coordination class of force, this requires identifying forces, which includes identifying the 
position, direction, and magnitude of the force. Coordination classes have been identified 
within physics (diSessa and Sherin, 1998; Wittman, 2001; Parnafes, 2007; Levrini & diSessa 
2008) and mathematics (diSessa & Wagner, 2005; Wagner, 2006). It is an empirical and 
theoretical question whether coordination class theory applies to concepts outside of these 
domains, but this theoretical model provides the potential to move toward moment-by-
moment models of students’ understanding of the importanct concept of state. Drawing from a 
larger study to be described later, in the following analysis I argue that the theory is relevant to 
computer science and can be refined by application to the concept of state.  

In the current analysis I propose that the concept of state is a coordination class. In the 
computer science context, state includes values calculated and maintained by the machine 
when executing a program. This includes user-defined variables, arguments to functions, return 
values from expressions and sub-expressions, and stack information such as the program 
counter and nesting of function calls. I show that students use everyday knowledge when 
reasoning about computer program state.  

This coordination class analysis requires command of the possibly unfamiliar vocabulary 
provided in the theoretical framework chapter. I believe that using coordination class theory 
provides other benefits, which in this analysis outweigh the costs. For example, the application 
of coordination class theory in this analysis was motivated by the following theoretical and 
pedagogical goals. 

A first theoretical goal was to use precisely defined terms to describe the nature of 
computer science knowledge. The coordination class constructs serve to name and 
operationalize aspects of the participants’ knowledge, reasoning, and performance that are 
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relevant to understanding their solution paths. In the process of describing rich episodes from 
the data corpus, it is beneficial to utilize established constructs. This is a better alternative than 
inventing new constructs because it likely provides additional clarity by using time-tested and 
validated constructs and increases comparability to previous studies.  

The second theoretical motivation for this work was to extend coordination class theory 
outside of physics and mathematics. Coordination class theory is not expected to be a static 
fully-refined theory (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). Instead, it is expected 
to be refined and tested by additional researchers. For example, many researchers have 
introduced new constructs and engaged in other forms of theory refinement (diSessa & Sherin, 
1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Thaden-Koch, Dufrense & 
Mestre, 2006; Parnafes, 2007; Levrini & diSessa 2008). My analysis provides the first analysis of 
a coordination class outside of the domain of physics or mathematics. The successful 
application of the theory to this new domain provides additional validation of the theory and 
this extension also works toward identifying commonalities and differences in learning across 
domains.  

The third theoretical goal was to make coordination class theory more comprehensible 
and therefore more valuable to the educational research community. diSessa and Sherin (1998) 
explicitly used empirical data as a tool to make the constructs from coordination class theory 
better understood by readers. Along the same lines, a goal of my empirical analysis is to 
contribute an example that can make coordination class theory more comprehensible, 
particularly for computer science educators. 

The first pedagogical goal is to develop better models of the commonalities and 
differences in learning across domains. This has immense potential for computer science 
education, which is a relatively young field compared to mathematics or physics. These non-
computing domains have a much longer history of educational research and may provide 
insights regarding teaching and learning that could improve computer science education. A 
missing link in connecting these bodies of research is the open questions regarding the 
commonalities and differences in learning between computer science and other domains.  

The second pedagogical goal is to join others (Papert, 1980; diSessa, 1986; du Boulay, 
1989; Cooper, Dann, & Pausch, 2000) in identifying state as a central concept in computer 
programming. I hypothesize that there may be commonalities in students’ knowledge of state 
across everyday and computer science contexts. Focusing students’ attention on state and their 
relevant prior experience with state may help students be more effective in learning about new 
types of state.  

As a first pass, state is a candidate for a coordination class because an expert in dealing 
with state can work with state fluidly across contexts to identify a type of information (diSessa 
& Sherin, 1998) from the world or, in this study, to identify state in computer programs. 
Coordination class theory provides a target for students’ understanding of computer program 
state. If state is a coordination class, competence with computer programming state includes 
not only the necessary facts regarding the behavior of the programming language, but the 
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coordination of this knowledge to achieve consistent and correct performance within various 
contexts (referred to as alignment by diSessa & Sherin, 1998). To name only a few 
considerations in this process, individuals must use knowledge about the scope of variables and 
about state change operations, which includes control structures that change the state of the 
program counter. The full set of knowledge, including knowledge related to these components 
and others, which an individual can use to identify the focal information of the coordination 
class, is referred to as the individual’s causal net (diSessa & Sherin, 1998).  

The focus on state rather than computer program state or a sub-component of 
computer program state such as arguments, variables, or call-stack state is a decision with 
theoretical and practical implications.  

Previous coordination class researchers have discussed the difficulty of identifying what 
coordination class individuals are using because many coordination classes are highly 
interconnected (Thaden-Koch, Dufrense & Mestre, 2006). diSessa and Wagner (2005) 
developed the idea that coordination classes exist in close relations to a collection of other 
coordination classes called coordination clusters. For example, diSessa & Sherin (1998) primarily 
emphasize force, which operates in a similar cluster of closely related coordination classes such 
as position, velocity, and acceleration.  It is likely that no coordination class exists in complete 
isolation from other coordination classes, but coordination class researchers typically still 
discuss the role of a single coordination class (Wagner, 2005; Wagner, 2006; Levrini & diSessa 
2008) or a few coordination classes (diSessa & Sherin, 1998; Wittman, 2001; diSessa & Sherin, 
1998; Parnafes, 2007) as primary in students’ reasoning.  

I chose to analyze the coordination class of state. An alternative would be to analyze 
individual components of state separately. I hypothesize that many of the subcomponents of 
state have significant conceptual overlap and that identifying these commonalities may be 
beneficial for students and educators. For example, I expect that the competence required 
identifying the state of variables overlaps significantly with the competence required to identify 
the state of user-defined variables. This is not a hypothesis that I systematically validate in this 
study, but it served to motivate the selection of the focus on the unified coordination class of 
state.  

I focus on the coordination class of state rather than only computer program state 
because I build upon the hypothesis from Knowledge in Pieces (diSessa, 1993) that domain 
expertise may develop from and include intuitive knowledge. Previous research in the 
Knowledge in Pieces line has focused extensively on the use and productivity of students’ 
intuitive knowledge in physics (e.g., diSessa, 1993; diSessa &; Parnafes, 2007). Everyday 
interaction with the physical world provides an obvious source of intuitive knowledge. In 
programming, the existence of relevant intuitive knowledge is less obvious, but potentially just 
as rich. Nevertheless, if program state is a coordination class, as I propose, then intuitive 
knowledge should interact with and in some cases support expert knowledge.  

Shinners-Kennedy (2008) argues for the “everydayness” of state. He enumerates a 
diverse set of stateful systems that permeate everyday life. From a wedding band indicating an 
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individual’s state as married or single to a scoreboard showing the score in a sporting event, he 
argues that people are essentially experts in reasoning about state. For example, the score in a 
sporting event changes with a specific set of known state-change operations. Shinners-
Kennedy’s arguments align with my expectations of individuals’ experience with state. State as 
a concept is not limited to a programming context. As Shinners-Kennedy argues, stateful 
systems and representations of those states surround us. While the relevance of this 
experience to computer programming is contestable, the existence of these stateful systems 
and therefore individuals’ experience with them is not. Given this ubiquitous experience with 
stateful systems and representations of those states, it may be reasonable to expect that 
individuals have developed intuitions regarding stateful systems. With this potential source of 
rich intuitive knowledge regarding everyday examples of state, it is relevant to question how 
this knowledge of state might be used in the development of expertise with computer 
programming state.  

The case study in this chapter is taken from a student reasoning about a computer 
science problem, and her everyday knowledge of state is of central focus in understanding her 
reasoning.  

diSessa and Sherin (1998) provided theoretical and empirical requirements for 
identifying a coordination class. This section provides an argument regarding the plausibility 
that state is a coordination class. While this mapping between the requirements of 
coordination class theory and state present a plausibility argument that state is a coordination 
class, it is possible that the behavior of individuals’ knowledge would not match the predictions 
based upon the model of the nature and interaction of knowledge. Therefore it is important to 
provide empirical validation of the model. This is not done using a large-scale quantitative 
study, but instead using process data from individuals’ reasoning about relevant problems. 

The data are taken from a portion of an interview with a college student named Megan 
(pseudonym) while she was solving a question taken from her previous course exam. During the 
focal episodes, she considered the possible values of two variables “A” and “B” and the 
behavior of the conditional “and” in the expression “A and B.” From the computer science 
perspective she was attempting to identify the set of legal states of the variables “A” and “B” 
and the output state of the “and.” During the focal episodes Megan used her everyday 
knowledge of both “if” and “and” to reason about the expression “A and B.”  

I will present four episodes. The four episodes are sequential and show various 
components of her coordination of state for the conditional “and.” These episodes document 
challenges and opportunities to building upon everyday knowledge. In each of the excerpts I 
identify active components of her coordination class of state such as elements from her causal 
net that are and are not used in concept projections to determine the behavior of “and” for 
different input states.   

Methods 
The episodes presented in this analysis are taken from a larger study designed to 

identify students’ productive out-of-domain knowledge. The data consists of videotapes of 
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semi-structured clinical interviews. The design of the interviews and study was informed by a 
line of work focused on the role of students’ prior knowledge. This line of research, referred to 
as Knowledge in Pieces (diSessa, 1993), provided me methodological examples (diSessa & 
Sherin, 1998; Wittman, 2001; diSessa & Wagner, 2005; Wagner, 2006; Thaden-Koch, Dufrense 
& Mestre, 2006; Parnafes, 2007; Levrini & diSessa 2008) and is the line of work from which I 
draw coordination class theory. The hypothesis that program state was a coordination class had 
been developed prior to data collection for this study. 

The participants were recruited from two introductory programming courses at the 
University of California, Berkeley and the interview used the programming language from the 
participants’ course, either Scheme or a variant of the Scratch programming language 
(Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) known as Snap (Harvey & Mönig, 2010).  

Content logs were created of all video data and episodes in which a participant 
experienced difficulty reasoning about or tracking state were flagged for further analysis. The 
episodes were of interest because when a participant experienced difficulty solving a problem 
he or she would frequently make statements that made aspects of his or her reasoning visible. 
Episodes of an individual solving a problem correctly often did not include evidence of that 
individual’s reasoning process. To evaluate theories of learning and knowing it is necessary to 
select episodes that provide sufficient information regarding the participant’s reasoning 
(diSessa, 1993). I flagged examples when an individual experienced difficulty because of the 
prevalence of elaboration of an individual’s reasoning in these situations. These excerpts were 
transcribed and annotated with information regarding gestures and inscriptions made by the 
participant. 

Ultimately, the episodes presented in this case study were selected because of Megan’s 
articulateness about her reasoning and because they provided the opportunity to discuss a 
number of phenomena described in previous coordination class analyses.  

The presentation of data is separated from the coordination class analysis of these data. 
For each episode I provide a summary of the episode, which is a narration of the episode and 
attempts to provide a clear representation of Megan’s reasoning and her interactions with me, 
the interviewer. Extended quotations are provided in the summary to provide the reader the 
opportunity to evaluate the validity of the analysis (Corbin & Strauss, 2008). Portions of the 
interview that are not of central interest are summarized in lieu of extended quotations.  

Following each summary section, I interpret Megan’s knowledge and reasoning using 
coordination class analysis and my interpretations are drawn from these extended quotations.  
I identify specific causal net elements that Megan appeared to use to identify state. In 
comparison to analysis of students’ understanding of physical phenomenon (diSessa & Sherin, 
1998) these are only a best approximation of the nature and scope of this knowledge because 
there is no previous research in computer science documenting knowledge elements as has 
been done in physics (diSessa, 1993).  
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Explanation of Focal Question 
The following section provides background regarding the interview context and details 

regarding the programming content for readers less familiar with computer programming or 
the programming language Scratch.  

During the interview, Megan solved a problem from a recent exam in her introductory 
programming course, which asked what the domain and range were for the function foo 
shown in Figure 25. The episodes in this case study focus on her reasoning about a subset of 
this problem.  

 

Figure 25. Original problem context from Megan's exam 

When solving this problem, she discussed at length the expression “A and B,” shown in 
Figure 26, and these discussions are the focus of the analysis. Figure 26 includes the variables 

 and . I will refer to these variables as “A” and “B” to clearly distinguish the variable  
from the article: a. Relating to the original problem context, Megan reasoned about what the 
variables “A” and “B” could be. 

 

Figure 26. Focal expression considered by Megan.  

As background, variables in the Snap programming language, like many programming 
languages, can be set to a value of true or false. However, students may only be exposed to a 
more narrow set of possible states of variables, not including Booleans. Sajaniemi (2002) found 
that of the 557 variables provided in three introductory programing textbooks, only six (or 
about 1%) of the variables stored a Boolean value. This suggests that students might have little 
exposure to cases like the one shown in Figure 26, where the variables “A” and “B” store a 
Boolean value. However, Booleans are not generally unfamiliar to students. Novice 
programmers commonly use Booleans in conditional control structure such as “if.” It is an open 
question whether students who do not find using Booleans in control structures to be 
challenging do find storing Booleans in variables to be challenging. A related observation is that 
novices will frequently avoid a return statement that returns a Boolean without enclosing the 
return statement within an “if.” Clancy (2004) reports that students will rewrite a statement 
like “return x = = y;” as “if (x = = y) return true; else return false;” 

The conditional “and” as shown in Figure 26 works like a function that starts with the 
initial state of two arguments and then returns a value. The conditional “and” will return true if  
both of the arguments are true and otherwise will return false. This output state from “and” 
may be stored in a variable or be the input to another function. Figure 27 shows a summary of 
the behavior of the conditional “and.”  
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True True True 

True False False 

False True False 

False False False 
Figure 27. Truth table for the state of the variables “A” and “B” and the resulting output of the focal expression “A and 

B” 

In many programming languages, the equivalent of the expression from Figure 26 is not 
valid without additional information specifying what to do with the return value from the 
“and.” Traditionally, the return value would be used in a control structure such as “if” or 
“while.”  In Snap, the language used by Megan, it is possible to execute this expression without 
additional code; you can simply double click on any expression and a small speech bubble 
shows the return value.  

The “if” control structure can be thought of as a function that takes two arguments: a 
Boolean and an expression or set of expressions. These expressions are executed if and only if 
the Boolean provided to the “if” was true. The “if” is not responsible for the processing of the 
conditional expression, only operating on that intermediate state that is returned by the 
conditional expression. Consider the expression shown below in Figure 28.  

 
Figure 28. Example "if" expression in the programming language Scratch. 

 Students may incorrectly believe that the “if” operates on an expression such as “n = 1.” 
Instead it takes the result of evaluating that expression, which will be either true or false. This 
may make the “if” appear less “smart” than might otherwise be assumed by students (see 
Clancy, 2004). A relevant element of structural knowledge, (diSessa, 1986) is what state is 
accessible to the “if.” The “if” only receives as input the result or state that is output by the 
expression contained as the test in an “if” expression.  

Case Study: Megan 
This case study is broken up into four episodes that were divided at points where Megan 

noticeably changed the causal net elements in her concept projection of state or her reasoning 
about state. These changes were also accompanied by differences in her coordination of 
program state. The narration and the coordination class analysis of each episode are presented 
sequentially below. 

Episode 1  

Summary of Episode 1  
As previously mentioned, the expression considered in this set of episodes was the 

expression “A and B.” This episode began when I asked Megan, “Yeah how does ‘and’ even 
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work? Do you know what I mean? Like let’s say if you were explaining it to somebody.” Megan’s 
response to this question is shown below.  

“Um, I’ve used ‘and’ just to like combine two things, so saying like ok if my shirt is red 
and I’m wearing shoes then this is true, like I’m matching or whatever. (Interviewer: 
Yeah) So then the ‘and’ would be used to combine two things.” 

Megan then returned to the original issue of what the variables “A” and “B” could be. 
She concluded that “they can’t be numbers” and then correctly summarized the behavior of the 
“and” expression. “if ‘A’ is true and ‘B’ is true then the Boolean is true. I think. And then. Oh so if 
only one of them is true then the whole thing is going to report false, because ‘and’ means both 
of them.” She again returned to this discussion of what values the variables “A” and “B” could 
be and brainstormed possibilities other than numbers.  

After this digression, Megan went on to reiterate the cases in which the expression “A 
and B” will return true or false. Although I interpret her tone and pacing as uncertain, her 
reasoning was accurate for all cases. Table 1 shows the transcript for Megan’s unprompted 
explanation of the various cases. The transcript is paired with the truth table for the expression 
“A and B,” and the ordering of these quotations and cases corresponds with the original 
ordering of her statements.  

Table 1. Transcript of Megan’s description of the cases of the expression “A and B,” shown alongside the relevant line of 
the “A and B” truth table. 

Transcript    
“it would only report true if both 

are true.” 
True True True 

“If one of them was true and one 
of them was false what would it 
report? (Interviewer: Yeah, what 

do you think?) It should report 
false then.” 

True False False 

False True False 

“if both are false then it also 
would report false? 

(Interviewer: What do you 
think?) 

I, I  think it would report false.” 

False False False 

Analysis of Episode 1 
Although Megan’s explanations of “and” being used to “combine two things” and that 

“‘and’ means both” are far from what might be found in a computer science textbook, her 
performance in describing the behavior of “and” in each of these cases demonstrated 
appropriate coordination. I will identify some elements of her causal net from her concept 
projections in this episode and I will discuss how these causal net elements supported her 
inferences and coordination of state for each of the three cases she discussed.  
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This excerpt began with Megan responding to the question of “how does ‘and’ even 
work?” Her statement “if my shirt is red and I’m wearing shoes” makes no reference to a 
computer science context and from this I assume she is using an everyday and not a technical 
use of the word “and.” This statement, which used a non-computer science use of “and” and a 
clothing context, suggests that she was building upon her everyday knowledge of “and.” 
However, an individual’s everyday knowledge of “and” is likely varied. From her use of a non-
computer science version of “and” I assume that she is using her everyday knowledge of “and,” 
but from this alone cannot identify particular elements in her causal net.  

Megan’s initial explanation of “and” is focused on the way in which “and” works to 
“combine two things.” The idea that “and” works to “combine” is a relevant element of 
Megan’s causal net for identifying state. The word “combine” is not specific enough to be 
correct or incorrect in the computer context and can be generously interpreted as a summary 
of the fact that there are two inputs provided to “and,” which are in fact logically combined1. It 
is ambiguous if this causal net element, which I will refer to as “and” works to combine, is used 
in her concept projection for each of the cases in Table 1, but this causal net element is 
consistent with her inferences in each of these cases.  

After she described the behavior of “and” Megan justified her conclusions by saying 
“because ‘and’ means both of them.” I do not anticipate that individuals will necessarily be able 
to identify the rationale behind their reasoning (diSessa, 1993); however, here Megan makes an 
explicit connection between her conclusions about “and” and this idea. I interpret her 
statement “‘and’ means both of them” as indicating generally that both inputs to the “and” 
must be true for it to return true. However it is unclear what properties Megan assumes “both 
of them” have. In particular, it is not clear if Megan realizes that the inputs to the “and” are 
Booleans and not unevaluated expressions. 

This phrase, “‘and’ means both of them,” can serve as a rule for determining the 
behavior of “and.”  While one person might directly memorize the content of the truth table for 
the function “and,” the idea that “‘and’ means both of them” can be used to derive the truth 
table. This is a second element of her causal net that supported her determination of the 
behavior of “and” and I will refer to it as “and” means both of them. I use Megan’s language to 
describe this causal net element, but I do not assume the form of the knowledge is only 
linguistic. What Megan appeared to achieve here was the determination of the behavior of 
“and” through the application of this idea to three cases. That determination of the behavior of 
“and,” if derived from the idea that “‘and’ means both of them” is not best described as 
linguistic knowledge.  

Megan’s statements shown in Table 1 are correct. They are also consistent with, and 
possibly derived from, from her causal net element that “‘and’ means both of them.” Megan 
appeared most confident when she claimed that “it would only report true if both are true.” Her 
language of “means both of them” can be mapped to this case where she describes that “both 

                                                        
1 The language of “input” is not used by Megan, but for clarity is used in my explanation here and in the following 

paragraph.  
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are true” using the common language of “both.” The simplicity of this mapping may account for 
her relative confidence in the behavior of “and” for this case. This may be a first example of 
applying this causal net element to make an inference about the behavior of “and.” 
Coordinating state for the remaining cases, she may have continued to apply her causal net 
element that “and” means both of them, but in these later cases Megan appeared less 
confident. Her confidence may relate to the relative difficulty of this mapping her causal net 
element “and” means both of them to these later cases. Megan’s lack of confidence can be 
seen in her interactions with me during the interview where she frequently phrased conclusions 
in the form of a question. Megan seemed unsure of what the expression would return if 
provided one true value and one false value; however, she identified the correct answer 
without assistance from me: “If one of them was true and one of them was false what would it 
report? (Interviewer: Yeah, what do you think?) It should report false then.” Considering the 
final case, Megan stated that: “if both are false then it also would report false?” I responded by 
saying “what do you think?” and Megan with some hesitation said “I, I think it would report 
false.”  

Despite some uncertainty throughout her explanation, I see no evidence of flaws in 
Megan’s reasoning. From the perspective of coordination class theory, she used elements from 
her causal net in concept projections to draw correct inferences about each of the cases. She 
demonstrated appropriate coordination of program state in the context of “and.” In particular, 
it appears that Megan could have used her causal net elements that “and” works to combine 
and that “and” means both of them to make inferences about the behavior of “and.”  

While she deliberated when identifying the output state of the “and,” she seemingly 
without thought identified three relevant cases for “and” as two true values, two false values, 
and one true and one false. I believe she was making inferences regarding the output states for 
“and” using the two previously mentioned elements of her causal net. However, to produce 
these cases she likely had a relevant causal net element, or elements, to more directly 
determine the relevant cases. Unfortunately we do not have data regarding the possible 
elements that supported this quick and accurate identification of cases, but according to 
coordination class theory whatever knowledge supported this aspect of her reasoning would 
count as an element of her concept projection for each of the cases.  

While the causal net elements discussed thus far are likely derived from everyday 
knowledge, her language of “report” is suggestive of a computer science context because the 
term is used in the Scratch programming environment. It is unclear if she is conscious of 
whether she is using computer science or everyday knowledge. I interpret Megan’s statements 
as connecting her everyday knowledge that “and” works to combine and that “and” means both 
of them to a computer science version of “and,” which “reports” a value. This bridging of 
knowledge may account for Megan’s uncertainly, or her uncertainty may come in attempting to 
apply a rather ambiguous rule such as “‘and’ means both of them” to predict the behavior of 
“and” in the computer science world.  
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My central claim in this episode is that Megan is reasoning about “and” in an everyday 
usage rather than only a computer science usage. For example, the “and” appearing in “rice 
and beans” is distinct from the computer science version of “and,” but could appropriately be 
described as “combining two things” and is consistent with “‘and’ means both of them.” This 
everyday “and” in “rice and beans” does not include the complexity of the computer science 
“and” where it receives as input only Boolean values and does not have access to the larger 
expressions that may be in an “and” expression. Her explanations of “and” do not suggest that 
they are computer-science-specific explanations of “and,” but we can see how these causal net 
elements that I identified could be used in a concept projection to produce coordination of 
program state.  

Her understanding of the context she created relating to “if wearing a red shirt” and “if 
wearing red shoes,” is undeniably supported by out-of-domain knowledge. I believe that she is 
able to cue her knowledge regarding conditionals in English and use it to understand the 
expression “true and true.” In this context, she demonstrated proper coordination and 
reasoned that “if ‘A’ is true and ‘B’ is true, then this would be true.”  

Episode 2 

Summary of Episode 2 
Within less than a minute of the previous episode, Megan expressed a different set of 

ideas regarding the expression “A and B.” In the interim time, Megan responded to my question 
regarding whether or not she thought she could use Scratch to confirm the conclusions she had 
made. A transcript of this digression is not provided. Megan’s statements that are the focus of 
episode 2 are shown below. In this segment, Megan began by questioning her previous 
reasoning.  

“I don’t understand how this would work because if you just have true and true why 
would that report true? Like shouldn’t, then again it could. (pause) Ok if we                                                                                                                                                                 
set it, but if you’re setting it, so like the Boolean of true and false, I still don’t get like why 
is that going to report anything.” 

To try to understand her seemingly new set of ideas I asked her “can you draw that in 
Scratch, what like, what you mean? The Boolean of true and false.” She spoke as she created 
the first three rows of inscriptions shown on the left side of Figure 29, but this transcript is not 
provided. The left side of Figure 29 shows the full representation she completed during the 
following quote. The right side of Figure 29 shows a translated representation of the 
expressions she had written, shown in the programing language Snap.  
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Figure 29. The work written by Megan when considering behavior of the conditional “and” with arguments “A” and “B.” 

She made the following conclusions:  

“Then you would basically have like the Boolean of true and false (writes “true and 
false”). But that’s not going to report anything because why would it report something 
that, is this true? Well is true and false true? Not really. And is, it’s not false either; I 
don’t think that could be a possible input. (Interviewer: And what part makes it 
impossible?) Just that it doesn’t make sense, to have like even if you have both of them 
true, it’s just why would it be true and true? (Writes “true and true”) True and true make 
what? Like, that’s what I don’t get. Why would it make true?” 

Megan’s next statements provided insight into her different inferences in episodes 1 
and 2. Megan distinguished two contexts of consideration: “out here in this world” versus “the 
computer” and determined that different rules applied in each context.   

“I mean it makes sense like out here in this world for it to be true just because it’s true 
and true, but I don’t see why the computer would make it, this equal true.” 

Analysis of Episode 2 
In episode 1 Megan demonstrated no flaws in reasoning about the expression “A and 

B.” In episode 2 she did not demonstrate the same competence and questioned her previous 
conclusions regarding the behavior of the conditional “and.” Megan’s final statements of this 
episode provided an explanation for her change in reasoning. Essentially she said that her 
everyday assumptions about “and” were not necessarily applicable to predicting what the 
computer would do.  

Regarding the expression “true and false,” Megan said that “I don’t think that could be a 
possible input.” This may relate to a lack of knowledge that an “and” is provided two Boolean 
values and not two expressions. Megan may or may not have this computer-science-specific 
knowledge in her causal net, but she does not apply it in this context.  

She confidently claimed that “true and true” “makes sense like out here in this world.” 
She appears to find “and” “out here in this world” intuitive and barely requiring an explanation. 
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To justify why “true and true” would be true “in this world,” she provides only a minimal 
explanation. She said “I mean it makes sense like out here in this world for it to be true just 
because it’s true and true,” which amounts to little more than saying “just because.”  

This shows that Megan recognized that we can think about “and” in an everyday context 
or a computer context. Her belief that there may be different behaviors in these two contexts is 
accurate.  This is a primary causal net element that dictated important aspects of her reasoning 
in this episode, which I refer to as this world and the computer have different rules. Megan does 
not make use of her causal net elements that “and” works to combine and that “and” means 
both of them. 

From episode 1 we have evidence that she had causal net elements to generate 
appropriate coordination, but here she is not successful at identifying the behavior of “and.” In 
fact, this is an issue of span because she does not believe her knowledge to be relevant to this 
context. It is not an external change in context, but Megan considers the context in a new way, 
which prevents her from drawing inferences and creating a concept projection for any of the 
cases.  

Recall that a concept projection is composed of all causal net elements that guide 
extractions and that are used to generate an inferential chain to identify the focal information 
of that coordination class. Megan uses the causal net element that this world and the computer 
have different rules. According to coordination class theory, Megan does not generate an 
inferential chain in this context because this causal net element causes Megan to believe her 
knowledge is not relevant. Unlike the other causal net elements I described, this does not get 
used within an inferential chain, nor does it guide an extraction. It is part of Megan’s causal net 
that is activated in this context, but there is no inferential chain and therefore no concept 
projection for this to be a part of. 

Megan does not continue to use the computer science laden word “report” here, which 
I identified as playing a role of bridging her everyday and computer science knowledge. Instead 
of using the technical word “report,” Megan used the word “make.” She said “True and true 
make what? Like, that’s what I don’t get. Why would it make true?” In episode 1 Megan used 
the technical language of report when using primarily everyday knowledge of “and.” However, 
in episode 2 when she explicitly discussed the computer context, as in the statement “I don’t 
see why the computer world make it, this equal true,” she used the everyday and non-technical 
language of “make.” 

It is unclear what caused Megan’s shift in reasoning and her new attention to the 
context of “and.” My prompt to “draw that in Scratch” brought the computer science context 
to her attention, but this prompt was in response to her change in reasoning and cannot be 
seen as the cause of this change. While we can rule out this prompt as the cause of the change 
in her reasoning, a similar mechanism might have played a role. During the interview, a copy of 
her test, with the expression “A and B” was visible. While there are no gestures that showed 
her attention on the test, seeing the test could have cued her attention to the computer 
science context and provided a greater attention to context in general.  
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The primary observation in this episode is that Megan engaged in a change of reasoning 
based upon her causal net element that this world and the computer have different rules. This 
change in what causal elements were used caused a lack of span because Megan believed her 
knowledge of “and” was not relevant in the context of the computer.  

Episode 3 

Summary of Episode 3 
Without support from me, Megan created the representation shown in Figure 30 and 

then concluded that “true and true” would report true. The transcript during her creation of 
this representation is not the focus of the analysis, but is provided below. 

“But if like you have um like I was saying like ok ‘A’ set ‘A’ to be, set ‘A’ to be true if, ok 
then if block would be above it, if um. Like if wearing red shirt then set ‘A’ to be true? 
And then if wearing red shoes, then set ‘B’ to be true and then it would be else false for 
both of them.” 

Functionally the transcript above narrates the creation of the representation shown in 
Figure 30. Megan ended this narration with the statement “and then it would be else false for 
both of them,” which does not describe text in the representation. I interpret this statement as 
indicating that both “if” cases would have an “else” case to set “A” and “B,” respectively, to 
false.  

 

 

If wearing red shirt 

   set a = true 

 

If wearing red shoes 

   set b = true 

Figure 30. A secondary context created by Megan to consider the case where “A” and “B” are true.  

Immediately after she constructed the representation shown in Figure 30 she drew the 
following conclusions: 2    

“But um so then you could have ‘A’ and ‘B.’ Oh yeah. Yeah. So then [‘A and B’] could be 
true and so then if wearing a red shirt then ‘A’ is true and then if wearing red shoes then 

                                                        
2 In the following quotations, bold denotes verbal emphasis. 
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‘B’ is true. So that would mean that if ‘A’ is true and ‘B’ is true, then this would be true // 
Oh so you can have true and true.” 

I probed for further explanation by asking “Ok why does that mean you can have true 
and true?” The transcript below shows Megan’s response to this question, which focused on 
how “and” includes an implicit “if” component. 

“Because um you can like have whatever variables so if you’re setting it so basically if 
this, so this block is saying if this is true and this is true (points to Figure 30), then report 
the whole thing as true. (Interviewer: Oh ok) But then if this is true and this is false 
(points to “A” and “B” in Figure 30), then that means both of them aren’t like true so 
then the whole thing would be false.” 

Next, Megan responded to my question: “How is what you’re saying now different than 
how you were thinking about it before?”  

“before I was just putting in true and false like setting them to be true and setting them 
to be false. So like okay true and true make what? But now I realize if you do: If this is 
true and this is true, like that’s what it means. Not just like true and true, but if it’s true 
and if it’s false. So I think just started thinking of the more if” 

Megan’s response focused on how she “started thinking of the more if” rather than just 
“and.” During the interview it was unclear to me if Megan realized that the expression we were 
considering did not include an “if.” I mentioned that the “and” expression Megan had written 
was not accompanied by an “if.” I said: “just this block by itself (referring to the block “A and B”) 
doesn’t have an ‘if’, does that make it not work?” While Megan’s first response was a dejected 
sounding “Oh,” she responded “Um actually I think it could still work… it’s still saying like if ‘A’ is 
true and ‘B’ is false. There’s no ‘if’ though, but I think it works.” 

Megan continued by saying “I think actually in our class they should have explained 
more how these blocks like work and what the input and output is because I still am confused 
about it. Like when we use it and right now. (Interviewer: Yeah) But I think it’s starting to make 
sense so you can have it be true and false.” 

Analysis of Episode 3 
At the beginning of episode 3 Megan wrote pseudocode for a real-world use of 

conditionals in which the predicate tests the state of an individual’s clothing and conditionally 
sets the variables “A” and “B.” From this context, Megan was then able to reason that “A and 
B” could return true and she again generated appropriate coordination of program state for the 
case of two true values. Her causal net element that this world and the computer have different 
rules dominated her reasoning in episode 2. In virtue of the bridge she created between this 
world and the computer, this causal net element is given less priority in her reasoning in 
episode 3. Unlike episode 2, in episode 3 Megan generated inferential chains to identify the 
behavior of “and” for various cases. This analysis develops a hypothesis regarding the way in 
which Megan connected her everyday knowledge and computer science knowledge and how 
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her conclusions were supported by bridging her structural and functional knowledge of “and” 
by focusing on “if.”  

In episodes 1 and 3 Megan used non-programming specific knowledge to make 
inferences about state. It is likely that in episode 1 she was unconscious of this out-of-domain 
knowledge use, but in episode 3 was able to explicitly connect her programming and everyday 
linguistic knowledge of “and.” She may have developed the causal net element that this world 
and the computer work the same way for “and” by observing that it was possible to represent 
her everyday example about clothing in Scratch. In episode 2, Megan considered the 
decontextualized Scratch expressions in Figure 29 without being able to realize the relevance of 
her everyday knowledge. In episode 3, she demonstrated alignment of state when she 
connected the decontextualized Scratch expressions to a representation of her real world 
scenario in Scratch. This may have served to connect her everyday and computer science 
knowledge or, perhaps more importantly, it made the idea that this world and the computer 
work the same way for “and” more plausible. This connection or this plausibility functioned to 
enable Megan to use her correct intuition about “and” to predict the behavior of “and” in a 
computer science context. 

I believe that through representing in Scratch psuedocode her real-world example of 
“and,” which was about clothing, she connected her understanding of “and” from “this world” 
with “the computer.” However, the mechanism of this connection and the specific knowledge 
that Megan bridged from “this world” to “the computer” is not obvious. To explore these 
issues, I examine the role played by Megan’s everyday and computer science knowledge of “if.” 

 In Megan’s explanations of her insight, she focused heavily on the role of the “if” in her 
reasoning about the expression “A and B.” Each of the times that Megan used “and” to describe 
her real-world example she also used “if.” Megan appears to not only use her everyday 
knowledge of “and,” but also her everyday knowledge of “if.” Megan re-explained “and” by 
using “if” to separate possibilities for what “and” would “report.”  

“This block is saying if this is true and this is true, then report the whole thing as true… 
But then if this is true and this is false then that means both of them aren’t like true so 
then the whole thing would be false.”  

 The “if” she used here is not the traditional conditional of “if” used in Scratch. This 
Scratch “if” takes only a single value and based upon that value determines the next line of 
code to be executed. Contrary to Megan’s description above, the Scratch “if” is not directly 
involved in the reporting of any value. The Scratch “if” is fundamentally different than the role 
“if” plays in Megan’s description of “and.” Megan says that the expression “true and true” 
actually “means” “[i]f this is true and this is true… Not just like true and true, but if it’s true and 
if it’s false.” In this quotation she contrasts the expression “true and true,” which was stated 
without an “if,” with a description that uses the “if” to include the idea that decision is made 
within or by the “and.” Megan’s description of “and” appears to contain an “if” and I will refer 
to this causal net element “and” contains an “if.”  
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It is possible that this element that “and” contains an “if” helps bridge her functional 
and structural knowledge of “and.” Students learn particular ways of accomplishing tasks; for 
example Megan might have developed functional knowledge for using “and” within an “if” 
expression. A common structure for an “and” expression would be “if (x = = y and x = = z).” This 
functional knowledge to create these types of expressions could serve Megan when reasoning 
about the behavior of “and” within an “if,” but might not be applicable to reasoning about the 
behavior of “and” if the “if” is not present or if the two elements in the “and” expression are 
Boolean values rather than tests.  In the methods section I discussed the common incorrect 
structural assumption that “if” operates on an expression rather than the Boolean output of an 
expression. If the conditional expression used in the “if” includes an “and” a student may 
assume that the “if” is responsible for executing the two tests or possibly responsible for 
executing the “and” expression. Megan’s explanation can be seen as patching this structural 
model by embedding the assumed responsibility of “if” as an implicit “if” in the “and.” My 
hypothesis is that she sees “and” as requiring a test and by attributing testing to “if” and 
thinking about “and” as containing an implicit “if” can satisfy her requirement of “and” as 
containing a test.  

Here she seems to be reasoning about the “and” block as if it contained an implicit “if” 
block. I assume that this causal net element built upon Megan’s knowledge of “if,” from both 
inside and outside of the computer science context. During the interview it was not clear to me 
whether Megan understood that the “and” could exist outside of an “if.” Megan eventually 
acknowledged that the “if” is not necessary, but appears to continue to reason based upon the 
causal net element that “and” contains an “if.” She said that “it’s still saying like if ‘A’ is true and 
‘B’ is false.”  I claim that she builds upon some everyday knowledge of “if,” but unfortunately 
we do not have more resolution regarding the nature of Megan’s everyday knowledge of “if.” 

Episode 4 

Summary of Episode 4  
Megan next continued with a previous line of discussion regarding whether or not the 

variable “A” could be a number. She concluded “I don’t think it makes sense if ‘A’ is a number” 
and set out to create an example to show that “A” cannot be a number. She constructed the 
expression “5 and true” shown in Figure 323.  

 

 

Figure 31. A context created by Megan to consider whether the variable “A” could be a number. 

                                                        
3 This can be constructed in Snap, a variant of Scratch, but is a syntactically invalid expression because providing 5 

as an argument to the “and” function would create an error. 
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Although she set out to show that it was invalid for “A” to be a number, as Megan talked 
through this expression she decided that if you had “earlier” set the value of “A” to be 5 that 
this would return true. Megan said “you would have like 5 and true? Oh that does make sense, if 
you set ‘A’ to be 5 earlier, or so like you don’t know if it is but like if ‘A’ is 5 and ‘B’ is true, then 
this whole thing is true.”  

I had significant difficulty in understanding Megan’s reasoning and after a few 
inconclusive questions and answers, I asked “why is ‘5 and true’ not false?” Megan responded 
as shown below and added to Figure 32 to create the diagrams in Figure 32 and Figure 33.  

 “it’s only if you have like set ‘A’ equals 5 (generates Figure 32).  Or like you have an 
index and ‘A’ becomes 5.  If ‘A’ was like 4 (generates Figure 33) then this part (points to 
the ‘5’) would be false and this part (points to the ‘true’) would be true and then the 
whole thing would be false.” 

 

 

Figure 32. Modified version of Figure 31 to include an assignment to the variable “A.” 

 

 

 

Figure 33. Modified version of Figure 32 that sets the variable “A” to 4 instead of 5. 

I asked Megan to explain “why if ‘A’ would be 4, then it would be false?” Megan at this 
point recognized her error as shown in the following transcript. “Because if um, because this is 
saying if ‘A’ is 5, oh wait it’s not saying if ‘A’ is 5, it’s saying just 5 … so if oh wait. No that 
doesn’t work.” Upon closer investigation Megan realized that “it’s not saying if ‘A’ is 5” and she 
appeared to correctly interpret this expression as invalid. The ellipses in the quotation above 
indicate that words were removed from the quotation. These words, shown in the following 
quotation seem to include only fragments of ideas, that are difficult to follow, but clearly show 
that Megan’s transition from the conclusion from “it’s saying just 5” to “No that doesn’t work” 
was not immediate. The phrases that she uttered at this time are as follows, “Oh could you 
have, oh well actually in that it has just ‘A’ in here. So if you have ‘A’ in here,” 
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Analysis of Episode 4 
Megan’s statements implied that “5 and true” tests the value of the variable “A,” but no 

test exists in this expression to check the value of the variable “A.” The primary question in this 
analysis is why did Megan originally see the expression “5 and true” as testing whether the 
value of the variable “A” was 5.  

From Megan’s performance on other problems I have no reason to believe that she saw 
the symbols she had written in any other way than they appear; I believe she competently 
extracts the text “5 and true.” However, to interpret that extraction she used elements from 
her causal net, which explains how her interpretation could differ from an expert’s 
interpretation. In particular, I believe her reasoning was influenced by her causal net element 
that “and” contains an “if” and her strong connection between “and” and “=.” 

In episode 2, Megan had difficulty seeing the “and” as reporting a value, but in episode 
3 determined that it could. The relevant observation from episode 3 is that Megan emphasized 
the way in which the “and” included the testing aspect of the “if.” Megan may have aspects of a 
structural model that “and” involves testing. In episode 3, she saw “and” as including an implicit 
“if” and similarly in episode 4 she may see “and” as including an implicit “=.” This process of 
attributing implicit behavior to “and” is consistent with incomplete structural knowledge. A 
correct structural model of state would imply that the “and” does not have access to test the 
value of the variable “A” and an implicit test does not take place.  

Megan had a strong connection between “and” and “=,” which I believe influenced her 
reasoning in episode 4. At one point earlier in the interview Megan flipped to talking about the 
“and” as “=.” This flip happened when she discussed what “and” would report if provided two 
false values, which is the only case that differs between “=” and “and.” She quickly caught 
herself, but momentarily entertained the idea of the “and” being, or being replaced by, an 
equals function. She says “I think it would report false, but then if this equals then it would 
report true, but it’s not equals.” This strong connection or even perhaps reliance on “=” may 
have occurred throughout the interview.  

 The causal net entity of “and” means both of them does not specify that “both of them” 
need to be true. Another interpretation is that “both of them” must be the same. This 
interpretation, which is equivalent to “=,” correctly predicts the behavior of “and” for all cases 
but the case of two false values. “False and false” reports false, but “false = false” reports true.  

 I conclude that Megan sometimes used the resource I will refer to as “and” tests. This 
aligns with thinking about an “and” as like an “=.” It is possible that Megan used this causal net 
element when she concluded that “5 and true” reports true and that “4 and true” reports false. 
Although Megan later recanted these claims, she appears to be guided by the belief that an 
“and” tests something about the current state, which can be partially explained by a strong 
connection to “=.”   
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Discussion 
In the focal episodes, Megan was reasoning about the behavior of “if” and “and,” but 

from a computer science perspective the relevant “behavior” that she considered was the 
possible state of the variables “A” and “B,” the input and output states of the conditional “and,” 
and the input and output states of “if.” The analyses of these episodes described the 
interaction of elements of Megan’s causal net, which may help understand the role of everyday 
knowledge in reasoning about computer program state. 

In episode 1 Megan was able to articulate the behavior of the “and” function for all 
possible initial states. While Megan did not appear confident in these facts, she demonstrated 
appropriate coordination and appeared to have an understanding of the expression “A and B.” 
In this episode she appeared to generate appropriate coordination through the causal net 
elements of “and” means both of them and “and” works to combine, as well as knowledge 
about the relevant sets of inputs to “and.” Episode 1 shows a real-world example of “and,” and 
other causal net elements of “and,” which are rooted in Megan’s everyday knowledge.  

In episode 2 she rejected that the same expression “A and B” would “report anything.” 
This conclusion prevented her from coordinating state and she appeared to use a causal net 
element of this world and the computer have different rules. Episode 2 shows an example of a 
lack of span and shows Megan’s sensitivity to perceived context as relating to “this world” or 
“the computer.” 

In episode 3 she created in Scratch a representation of an everyday example about 
clothing. From this bridging of her computer science and everyday knowledge, Megan was 
again able to demonstrate appropriate coordination and extended the span of her coordination 
class of state. In addition to the causal net elements identified in episode 1, Megan appeared to 
build upon the causal net elements of this world and the computer work the same way for 
“and” and “and” contains an “if.” This is an example of a student using intuitive knowledge 
productively to reason about a computer science context. However, throughout this 
progression Megan did not appear to recognize an important property about “if” and “and,” 
which is that they both operate only on Boolean values and not expressions.  

 In episode 4 Megan temporarily believed the expression “5 and true” to be testing the 
value of the variable “A.” Eventually Megan caught her mistake, but before this she appeared 
to be reasoning based upon the causal net elements of “and” contains an “if” and “and” tests, 
as well as a strong connection between her knowledge of “and” and “=.”  

My analysis extends coordination class theory to the domain of computer science for 
the first time by using coordination class theory to analyze a student’s reasoning about the 
concept of state in a computer science context. This moves computer science education 
forward by providing an initial theory describing the moment-by-moment interaction of 
knowledge. This work advances coordination class theory by evaluating the theory outside of 
physics and mathematics  
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Relationship to Previous Coordination Class Research 
 In the following section I will draw out some similarities and differences between this 
work and previous coordination class analyses.  

diSessa and Sherin (1998) 
The article by diSessa and Sherin (1998) introduced the term coordination class and 

diSessa and Sherin (1998) used examples from an undergraduate student taking an 
introductory physics course. The third empirical example in diSessa & Sherin (1998) focused on 
a student’s coordination class of acceleration and coordination class of force. She correctly 
identified that a book pushed by the interviewer across the table was not accelerating. In this 
way she correctly coordinated acceleration. However, she demonstrated incorrect coordination 
of forces. Instead of using the equation relating acceleration and forces from her causal net, 
F=ma, she uses intuitive knowledge that generates a non-normative result in this context. The 
intuitive knowledge she used was that “contact conveys motion,” which diSessa (1993) 
identified as a p-prim. This intuitive knowledge and her confidence in the lack of acceleration of 
the book leads her to conclude that the equation F=ma does not apply in this context.  She said 
“I guess you can just say that, you know, those darn equations aren’t applicable to every single 
thing. They’re not always true. You can’t live by them… I just thought that F=ma was one of 
those that was universal.” This student’s rejection of the relevance of the equation F=ma to this 
situation can be seen as parallel to Megan’s rejecting that “true and true” would not report 
anything. The student in diSessa & Sherin (1998) used the idea that “contact conveys motion” 
instead of the equation “F=ma.” Megan rejected that “true and true” would report anything 
based upon the idea that this world and the computer have different rules instead of her 
knowledge that “‘and’ means both of them” and that “and” combines. Both students cued 
relevant knowledge that could have been productively applied, but reject that this knowledge is 
relevant in this context. The differences between these two cases are numerous, but these few 
commonalities are remarkable to see across domains.  

 diSessa and Sherin (1998) identify the ways in which their participant was justified in 
being careful about the applicability of equations. diSessa and Sherin note that F=ma does in 
fact have limitations in terms of applicability and her sensitivity that it may not be universally 
applicable, although it does apply to the context she discusses and is part of a generally 
productive attitude for reasoning about physics. Similarly, Megan rejects that her everyday 
knowledge of “and” is relevant to the computer science context. She too identifies that there 
may be different contexts of applicability and questions why “and” in the real world and 
computer would behave in the same way. 

Parnafes (2007)  
 This analysis in this chapter diverges from previous coordination class analysis by 
focusing on Megan’s coordination class of state independent of what type of information 
believed she was determining. This divergence can be seen most clearly through a comparison 
to the analysis of Parnafes (2007). Parnafes (2007) discussed students’ understanding of the 
intuitive coordination class of fastness. She discussed how students originally used this 
coordination class to analyze oscillations when in fact they should be using the coordination 
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classes of frequency and velocity. A heuristic of selecting an appropriate coordination class that 
has guided previous coordination class analyses (A. A. diSessa, personal communication, April 3, 
2012) is that the relevant coordination class is the coordination class that the participant 
believes themselves to be using. This governed the development of the construct of intuitive 
coordination classes (Parnafes, 2007; A. A. diSessa, personal communication, April 3, 2012) 
where students’ believed that they were identifying the relative “fastness” of the oscillator. I 
believe that this artificially emphasizes a transition from the intuitive coordination class to the 
correct coordination classes of velocity and frequency. Many of the knowledge elements that 
the participants used across the episodes presented were likely the same or quite similar. I do 
not claim that Megan was aware that she was identifying state during these episodes. I 
deemphasize what coordination class the individual believes themselves to be using for the 
purpose of emphasizing the commonality between the tasks and the ways in which Megan 
bridges her everyday knowledge to reason about computer science. 

Levrini & diSessa (2008) 
Like the students in Levrini & diSessa (2008), Megan demonstrated in episode 2 that 

students can reason about the relevance of various knowledge elements regarding state; 
however, I am not implying that this process of articulate alignment will be common or 
necessarily viable pedagogically. While other conceptual change research (e.g., Strike & Posner, 
1992) prescribes pedagogical techniques to confront inconsistency in students’ understanding, I 
do not offer sufficient evidence to suggest that this would be a generally useful strategy. I 
expect that the majority of students engage unconsciously in their application of relevant 
knowledge, which might make the technique ineffective. As a second point, this form of 
confrontation may engender in students a lack of trust for their ideas (Smith, diSessa, & 
Roschelle, 1993), many of which could serve as fertile grounds for the development of 
coordination.  

Pedagogical Implications 
Although the primary focus of this paper is the development and refinement of theory 

regarding computer programming knowledge, I highlight some of the pedagogical implications 
from my work. 

A first pedagogical implication of this works is to join other researchers (diSessa, 1986; 
du Boulay, O’Shea, & Monk, 1989; du Boulay, 1989; Cooper, Dann, & Pausch, 2000; Ben-Ari, 
2001; Sajaniemi & Kuittinen, 2005; Shinners-Kennedy, 2008) who focus attention on state as an 
important concept in computer science education. The case presented in this chapter 
demonstrates the complexity of this concept in the computer science context and showed 
interactions between a student’s structural and functional knowledge (diSessa, 1986) and 
everyday and computer-science-specific knowledge. This complexity suggests that a 
pedagogical focus on state might be necessary or at least productive for students. This analysis 
provides an empirical basis for the conclusions of Shinners-Kennedy (2008) that individuals 
have experience with state that may be relevant to computer science contexts. In episode 3 
Megan achieved the type of transfer of her everyday knowledge to the computer science 
context that we hope to achieve in instructional contexts.  
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A second pedagogical implication of this work is that coordination of knowledge at one 
point in time does not guarantee coordination of the same knowledge at another point in time. 
Coordination class theory argues that knowledge within a coordination class is made up of a 
variety of conceptual elements. With improved coordination students access these elements 
more reliably to determine the relevant focal information. A key component of the theory is 
that errors in performance are not necessarily evidence of a lack of knowledge. Frequently the 
individual could be described as “having” relevant knowledge that they do not use within a 
context. In the dynamic process of problem solving, students make conscious and unconscious 
decisions about what knowledge they apply to a problem. A novice may have the relevant 
knowledge, but may not, for some reason, use the necessary knowledge in concert to correctly 
identify the focal information of the coordination class. The case presented here shows 
examples where Megan originally used intuitive knowledge, but had difficulty applying that 
knowledge in a second context. She was eventually able to create a bridge to be able to use this 
knowledge in both cases.  

A third pedagogical implication of this work is that tracking program state requires an extensive 
set of facts regarding the programming language as well as expertise in utilizing these facts in 
concert. The case study showed that the central challenge was the coordination of everyday 
and computer science knowledge and not, as others might expect, simply the acquisition of 
knowledge regarding the programming language. I hypothesize that errors where students have 
the requisite facts necessary to have prevented or detected their errors are frequently 
interpreted by students and instructors as unproblematic mistakes that do not require 
remediation. For example, Megan’s reasoning about the expression “5 and true” as testing the 
value of the variable “A” can be seen as only a simple mistake. The coordination class analysis 
provides a focus on the coordination of relevant knowledge and suggests that these incidences 
are not simply mistakes and are best categorized, more particularly, as evidence of a lack of 
span or alignment. 
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PARTIAL DESCRIPTIONS OF STATE CHANGE 
The previous chapter tracked the moment-by-moment use of knowledge when an 

individual used the coordination class of state to reason about the behavior of the conditional 
“and.” In this chapter, I identify a particular type of inference that an individual can make when 
reasoning about state. The emphasis in this analysis is not on the dynamics of how these 
inferences are linked to create an inferential chain, but instead on developing a model of a 
particular type of link that can exist in a concept projection of state. 

This chapter is focused on students’ statements that summarize patterns of state and 
state change as a type of inference than an individual can make when reasoning about state. 
Researchers have reported that students have difficulty providing a summary of code that 
focuses on the overall behavior of the code rather than the line-by-line details (Hoadley, Linn, 
Mann, & Clancy, 1996; Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, 
Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009). Researchers have speculated 
that the ability to produce a summary of code develops after the ability to trace code 
(Venables, Tan, & Lister, 2009).  

Despite the reported difficulty, I found that students frequently made statements that 
summarized aspects of state when answering a question about how to avoid an infinite loop in 
a recursive function. Surprisingly, many of these students had difficulty on a previous problem 
that required tracing the same recursive function. This pattern of students’ competence 
provides the opportunity to investigate a context in which students were successful at 
generating a summary of code that does not focus on the line-by-line details and the 
opportunity to schematize this type of inference and how it relates to the process of tracking 
program state. The generalization that students have difficulty providing a summary of code 
requires additional refinement to provide contextual specification. 

The data from this study were taken from seventeen clinical interviews with college 
students who were enrolled in an introductory programming course at the University of 
California, Berkeley. During the approximately hour-long interviews, participants talked aloud 
while they solved computer programming problems.  

The problems used in the interviews were translated versions of the problems identified 
by Reges (2008) as the five questions that were most highly correlated with success on the 
1988 Advanced Placement Computer Science (APCS) exam. The selection of these questions 
aligned the study’s interview with content from an international introductory computer 
programming curriculum. Another benefit of selecting questions most highly correlated with 
success on the exam is that these questions may contain a set of competencies that are 
important for introductory programming.  

In the following analysis, I focus on one such question, which asked students to identify 
the conditions that would not create an infinite loop in a recursive function. This question, 
which I call the “infinite-loop” question, followed a question that asked students to find the 
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output of the same recursive function for a particular input, which I call the “tracing question.” 
The tracing question and the infinite-loop question are shown in Figure 34 and Figure 35 and 
are described in detail in the methods section of this dissertation. The tracing question was not 
one of the questions most highly correlated with success on the exam, but was included in the 
interview because it was the first part of a two-part question, where the second part was one of 
the questions most highly correlated with success. During the interview, participants solved 
these problems in the same order as they appeared on the APCS exam and participants’ 
responses to this pair of questions form the data corpus of the study.  

(define (whatIsIt x n) 

   (if (= n 1) 

        x 

       (* x (whatIsIt x (- n 1))) )) 

 
What value is returned by (whatIsIt 4 4)? 
A) 8 B) 16 C) 24 D) 64 E) 256 
Figure 34. The “tracing question”: a translation of a question from the 1988 APCS exam. 

Which of the following is a necessary and sufficient condition for the function WhatIsIt to 

return a value if it is assumed that the values of n and x are small in magnitude and are both 
whole numbers? 
A) n > 0  

B) n = 0  

C) n > 0 and x > 0 

D) x ≤ n and n > 0 

E) n ≤ x and n > 0 
Figure 35. The “infinite-loop question”: a replication of a question from the 1988 APCS exam. 

On the infinite-loop question, participants demonstrated accurate reasoning and made 
statements about the patterns of state change. This contrasted with many participants’ 
performance on the tracing question, where they were not successful tracking state.  

To introduce the nature of participants’ insights on the infinite-loop question, I provide 
a case study of one participant’s solution to the two focal questions. This case study of the 
student Rick4 (participant identifier: Yellow_BL/Purple_BR) shows that the context of the 
infinite-loop question induced a specific insight that appeared to be missing in his solution to 
the tracing question and this missing insight was likely the reason for his difficulty. I selected 
this case because it clearly demonstrated difficulty on the tracing question and insights about 
state change on the infinite-loop question. 

The primary contributions of this chapter are operationalizing this type of state 
summary, which I call a “partial description of state change” and demonstrating the existence 

                                                        
4 All names are pseudonyms 
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of this competence within a particular context. The case study provides two examples of a 
partial description of state change. After orienting the reader to the type of inferences 
observed in the data, I delineate and describe two types of partial descriptions of state change. 
This is followed by a collection of quotations from across the data corpus, which serves 
primarily as exemplars to help illustrate the range of statements that would be classified as 
partial descriptions of state change. 

A later chapter includes a discussion of some pedagogical implications for teaching 
recursion. There I discuss the possibilities of encouraging students to reason about the cases in 
which a function call results in an infinite loop before attempting to trace the same function.  

Case Study 
When creating content logs for the data, I noticed that the participants occasionally had 

greater insight regarding the behavior of the WhatIsIt function when answering the infinite-

loop question than when answering the tracing question. The following case study 
demonstrates this pattern. This case is used to make the claim that the insights on the infinite-
loop question are relevant to the coordination of state before introducing a classification 
system for these insights. The analysis of this case includes a narration and interpretation of the 
participant’s solution to both the tracing question and the infinite-loop question. The data from 
this participant is then used to map the ways in which his insights on the infinite-loop question 
might have been helpful to him when solving the tracing question.  

For the participant Rick, the infinite-loop question appeared to elicit insights about the 
patterns of state change that were not accessible to him when he solved the tracing problem. 
As a brief overview, he mentioned accurate patterns of state change for the variables x and n, 
but his insufficient tracking of these same variables was the likely cause of his incorrect solution 
to the tracing problem. The section following the case study seeks to schematize more 
generally the nature of his insights. 

Rick began the tracing question by explaining that he had recently learned recursion and 
then read the question aloud. After a brief pause, I asked Rick “What are you thinking?” He 
responded with the statements below and generated the first line of handwritten inscriptions 
in Figure 36, “4 3 2 1.” 

“Oh okay – so you’re multiplying x, which is the first number here (writes 4) by um, 3 
(writes 3) and then 2 (writes 2) and then 1 (writes 1).”  

 

Figure 36. Notes made by Yellow_BL when solving the tracing problem 
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Without speaking, Rick generated the second line of handwritten inscriptions in Figure 
36. Although I do not have evidence of his reasoning, he wrote 12, the partial product of 4 and 
3, and 2, the partial product of 2 and 1. His final answer was 24 (or 4x3x2x1), instead of the 
correct answer, 256 (or 4x4x4x4). 

The variable that gets multiplied by the function is, as Rick said, x. However, x is always 
4. Rick’s reasoning was consistent with a function that continually multiplies the variable n, 
because the value of n begins with a value of 4 and decreased by 1 in each recursive call. He 
may have incorrectly believed that the value of n gets multiplied by the function or he may 
have incorrectly believed that the value of x was changing. Given his statement “so you’re 
multiplying x,” the latter seems more plausible, but ultimately the source of his mistake is 
unknown. Instead it might be that when tracing the function he was not paying close enough 
attention to how the variables change and how the variables are used. When he traced through 
the function he did not mention the individual function calls, which may be a symptom of his 
lack of care in tracing the values of the variables x and n and may have prevented his 
coordination of state. A formal coordination class analysis is not conducted here, but it may be 
helpful for the reader to note that here Rick demonstrated a lack of alignment in his 
coordination class of state. Rick applied his partial coordination class of state to determine the 
return value of the function, but his determination of the state was inaccurate. This alone 
classifies as a lack of alignment, but in his concept projection of state his partial descriptions of 
state were not consistent with his written representations, which is further evidence of a lack of 
alignment.  

Figure 37 shows one set of calculations that can be inferred from Rick’s statements. 
Given the fact that he answers the question incorrectly, it is ambiguous whether he incorrectly 
tracked the values provided to the function or incorrectly tracked how those values were used 
in the function. This diagram includes the assumption that Rick correctly tracked the values of 
the variables provided to each recursive call. While he identifies himself as having “just learned” 
recursion, I infer from his solution that he correctly combines pending calculations from each 
level of the recursive calls, which has been identified as a difficult aspect of tracing recursive 
functions (e.g., Kahney, 1989).  
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Figure 37. Incorrect recursive tracing that was inferred from statements made by Rick (YellowBL/PurpleBR) when 
tracing a call to (WhatIsIt 4 4)  

I expect the reader might question the severity of the mistake made by Rick. He may 
have just confused the values of the variables x and n. This may be a completely accurate 
description, but is at best an incomplete explanation. When solving other problems he did not 
appear to confuse the values of any variables. It appears from the data that this confusion is 
context sensitive. This simple confusion may be evidence of a more systematic weakness in 
tracing recursive functions. This relates to the larger theme in the work of the coordination 
class of state. An expert’s coordination class of state includes both the ability to correctly track 
state and the knowledge that precise tracking of variables, such as with a representation, is 
necessary to correctly track state.   

Next, on the infinite-loop question, Rick’s reasoning included statements about the 
pattern of state change between recursive function calls.  After reading the question aloud to 
himself, Rick quickly determined the correct answer. He said:  

“So here, uh the base case is n equals one and obviously you’re subtract, you end up 
subtracting here, so it can’t be less. It can’t have anything where n is less than one. So n 
has to be greater than zero, so that gets rid of that (crosses off answer option B) and, 
(pause)  so both are whole numbers so that means that um x does not it doesn’t matter 
what x is here, so n has to be greater than zero (circles A).” 

Rick went on to elaborate on his answer. Most notably he stated that “you end up just 
multiplying whatever x is by this recursive call” and also that “you’re not changing x.”   

Rick’s statements about the patterns of state change between recursive function calls 
contradicted his calculation on the tracing question. In that problem, it appeared that he 
assumed either that n was being multiplied or that x was changing. Both of these hypotheses 
seem refuted by his statements on the infinite-loop question. However, we can form a different 
interpretation of this seemingly inconsistent behavior by taking a perspective from 
coordination class theory. With this perspective we can map the two questions to different 
contexts that in turn elicited different knowledge.  

Rick did not notice the contradiction of his statements on the infinite-loop question and 
his solution to the tracing problem. However, his insight could have served as a check to his 
line-by-line tracing of the code. Rick’s knowledge that supported the inference that the value of 
the variable x is not changing could have been fruitfully applied when tracing through the same 
function. It may be that competent individuals make some mistakes like Rick’s, but that they 
are more deliberate about checking their solution and more capable of checking their solution 
with another method. 

From the Knowledge in Pieces perspective, it is not surprising that students built upon 
different knowledge on two similar problems. The tracing question appeared to focus Rick on 
specific values of x and n and the infinite-loop question appeared to focus Rick on these more 
general patterns of state change.  
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It was not relevant to describe how the variable x changes to justify his solution to the 
infinite-loop question, but his descriptions of how x changes seemed to flow naturally within 
the interview. The think-aloud format can make tangential inferences like these explicit when 
an individual says them aloud. There may be different supports for this type of tangential, but 
productive, inferences within a think-aloud and within a silent assessment.  

Case Study Conclusions 
This case showed an example where a participant stated insights regarding the patterns 

of state change. These insights mapped directly to the difficulties the participant appeared to 
have on the tracing question. He was unsuccessful tracking the state of the variables x and n, 
but then had correct insights about how the state of these variables changed. The content of 
his insights on the infinite-loop question maps directly to his weakness on the tracing question.  

I am not making the argument that the participant’s insights on the infinite-loop 
question would be the only path to his success on the tracing question, only that there is a 
mapping between this participant’s insights on the infinite-loop question and his apparent 
weaknesses on the tracing question. None of the participants returned to the tracing question 
after answering the infinite-loop question; therefore it is not possible to demonstrate that 
Rick’s or other participants’ insights were in fact productive, only that they might have been 
productive. The ability to use multiple methods to check an answer may be a type of expertise 
and these insights would be productive for that purpose.  

I also do not claim that the participant would necessarily have had the same insights on 
the infinite-loop question if he had not first attempted the tracing question. It is possible that 
the participants developed a greater understanding of the WhatIsIt function by attempting 
to trace it.  

Previous Research 
There is great interest in understanding students’ difficulty explaining code beyond line-

by-line descriptions (Hoadley, Linn, Mann, & Clancy, 1996; Whalley et al., 2006; Philpott, 
Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 
2009). Much of the research in this area has been conducted by research from the BRACElet 
project, which has investigated the hypothesis that there exists a hierarchy of programming 
skills (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, & 
Lister, 2008; Venables, Tan, & Lister, 2009). Lopez, Whalley, Robbins, & Lister (2008) found a 
positive correlation between participants’ performance summarizing code and their 
performance writing code, which was statistically significant at the .01 level. They used these 
data as partial evidence for the existence of a hierarchy of programming skills. Venables, Tan, 
and Lister (2009) describe this hierarchy of programming skills in the following quote: 

 “First, the novice acquires the ability to trace code. As the capacity to trace becomes 
reliable, the ability to explain code develops. When students are reasonably capable of 
both tracing and explaining, the ability to systematically write code emerges.” (p. 128, 
Venables, Tan, & Lister, 2009) 
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Whalley et al. (2006) attempted to categorize the level of abstraction in participants’ 
attempts to “Explain in plain English” what a particular segment of code “does.” They used the 
Structure of Observed Learning Outcome (SOLO) taxonomy (Biggs 1982, Biggs 1999) to perform 
this categorization. The SOLO taxonomy was designed to describe stages in students’ learning 
within a domain.  The bullets in Figure 38 show the five levels of understanding identified by 
Biggs (1999) that may serve as a reminder for those familiar with the SOLO taxonomy. These 
descriptions may be insufficient for a reader unfamiliar with the SOLO taxonomy, but only two 
categories are prominently featured in previous computer science education research and are 
elaborated in the following paragraph.  

 Pre-structural - The task is not attacked appropriately; the student hasn’t really 
understood the point and uses too simple a way of going about it. 

 Uni-structural - The participant’s response only focuses on one relevant aspect. 

 Multi-structural - The participant’s response focuses on several relevant aspects but 
they are treated independently and additively. Assessment of this level is primarily 
quantitative. 

 Relational - The different aspects have become integrated into a coherent whole. This 
level is what is normally meant by an adequate understanding of some topic. 

 Extended abstract - The previous integrated whole may be conceptualized at a higher 
level of abstraction and generalized to a new topic or area. 

Figure 38. The five levels of understanding from the SOLO taxonomy, quotations from Biggs (1999) 

To make the SOLO taxonomy accessible to computer science educators, Whalley et al. 
(2006) provided descriptions of the categories as they relate to types of questions from 
computer science. For example, they operationalized the SOLO taxonomy category of 
Relational as “Provides a summary of what the code does in terms of the code’s purpose” (p. 
248, Whalley et al., 2006). The Relational category is emphasized in their work as a target for 
participants’ explanations. The other SOLO category emphasized in their work is the 
Multistructural category, which they describe as when a “line by line description is provided of 
all the code. Summarization of individual statements may be included.” (p. 248, Whalley, et al., 
2006).  

In this line of work, which investigates students’ ability to provide summaries of code, 
researchers frequently used the SOLO taxonomy to rate the quality of participants’ code 
summaries (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, 
& Lister, 2008; Venables, Tan, & Lister, 2009). These descriptions seem to assume that a 
participant’s responses would fall into a single category and that a response would include 
either a line-by-line description of the code or would include a summary of the code’s purpose. 
If a student’s response included elements matching the Relational category and other elements 
matching the Multistructural category, it would be difficult to classify the response with one of 
these categories. Venables, Tan, and Lister (2009) found that it was difficult to reliably 
categorize students’ responses.  An expert would, by definition, be able to provide both forms 
of explanation; therefore it is easy to imagine that a response could match both the Relational 
and Multistructural category descriptions. 
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While Venables, Tan, and Lister (2009) argue that there exists a hierarchy of 
programming with tracing, describing and writing code, they also acknowledge some limitations 
of their work. Their data might exhibit the same patterns if the tracing questions happened to 
be the easiest, followed by the code explaining questions, and with the code writing questions 
as the most difficult. Venables, Tan, and Lister (2009) acknowledge this threat to validity and 
also note that the correlations were “particularly sensitive to the specific questions asked.” (p. 
117, Venables, Tan, & Lister, 2009). This is consistent with the pattern observed in this study 
where a particular context elicited a greater number of statements that could be classified as 
Relational.  

The work of previous researchers (Whalley et al., 2006; Philpott, Robbins, & Whalley, 
2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009) and the SOLO 
taxonomy both highlight what I believe to be an important conceptual challenge for students 
learning computer programming, which is to articulate a description of the behavior and goals 
of computer programs. The goal of the following section is to characterize the nature of some 
of the insights the participants had when answering the infinite-loop question.  For this 
purpose, the descriptions of the categories Relational and Multistructural provided by Whalley 
et al. (2006) are unfortunately too coarse. 

Types of Partial Descriptions of State Change  
I will identify two types of what I refer to as a “partial description of state change.” The 

first type of partial description is what I refer to as a “single-line summary.” This is essentially a 
description of how a single line of code modifies state, which has been identified as central to 
programming competence (diSessa, 1986; du Boulay, O'Shea, & Monk, 1989; du Boulay, 1989).  

The second type, which is the focus of this work, was inspired by research from the 
BRACElet project (Whalley et al., 2006; Philpott, Robbins, & Whalley, 2007; Lopez, Whalley, 
Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009), but in my analysis I do not use the SOLO 
taxonomy directly. The BRACElet project research referenced above emphasized students’ 
recognition of patterns of program execution that extend beyond the behavior of a single line 
of code. I build upon this emphasis. This is not to diminish the importance of understanding the 
behavior of a line of code both functionally and structurally (diSessa, 1986).  However, building 
upon participants’ understanding of a single line of code, it is possible to identify the behavior 
of multiple lines of code rather than just a single line of code.  

I will refer to statements that describe the cumulative behavior of multiple lines of code 
as a “multiline summary.” When I refer to “multiple lines,” I do not intend to imply that those 
lines are unique. For example, consider the code in Figure 39. The first line could be 
summarized as “Add 1 to the value of the variable x.” This summary describes the behavior of a 
single line of code. An example of a multiline summary would be if the four lines of code in 
Figure 39 were described as “add 4 to the value of the variable x.” This describes the execution 
of the same line of code multiple times and is a multiline summary about the cumulative 
behavior of those lines of code.  
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Figure 39. Code that adds 4 to the value of x. 

Here there were sequential copies of the same line of code. A single line of code can 
also be executed multiple times when a line of code appears within a loop or a recursive 
function and the executions of this line may be only a subset of the code that is executed. 
Another example of a multiline summary is when an individual describes the behavior of a 
single line of code that is executed multiple times because it appears within a loop or in the 
body of a recursive function.   

I claim that participants provided multiline summaries and I develop this claim through 
two subsections, which analyze participants’ statements regarding the variables n and x, 
respectively. Quotations were selected for analysis in each of these subsections if they included 
reference to the variables n and x, respectively. I provide examples multiline summaries and 
quotations that are similar, but that I do not classify as multiline summaries.  

I expect that multiline summaries can be produced by experts and may be particular 
relevant for successfully tracing recursive functions. This may be a relevant computer science 
competence that is difficult to acquire. These partial descriptions are inspired by the work of 
researchers who apply the SOLO taxonomy to computer science (Whalley et al., 2006; Philpott, 
Robbins, & Whalley, 2007; Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 
2009). While there is not a direct mapping between the SOLO taxonomy categories and my 
definition of a multiline summary, this previous research provided validation for the importance 
of what I define as multiline summaries. The analysis of these quotations is followed by an 
argument regarding the potential applicability of these multiline summaries to coordinating 
state.   

Analysis 

Participants’ Partial Descriptions of State Change for the Variable n 
Research from Whalley et al. (2006) suggests that participants’ summaries of code that 

do not focus on a line-by-line description of the code are rare. The quotations below are 
perhaps distinctive as they focus on the changes in the value of the variable n and not the 
behavior of a single line. To make my definition of multiline summaries clearer I will describe 
the ways in which the first four quotations can be classified as examples of a multiline summary 
and the ways in which the fifth quotation cannot be classified as such. These examples are 
intended to show the range of multiline summaries. I have selected cases that less directly 
qualify as multiline summaries to show the boundaries of the classification scheme. Despite the 
diversity among multiline summaries that I demonstrate here, I argue that these multiline 
summaries are a coherent and observable artifact. This contrasts with the SOLO taxonomy, 
which is not a sufficiently precise analytic tool for the goal of the chapter to characterize 
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participants’ insights. In the following analysis I identify the quotations as examples of multiline 
summaries and/or examples of Relational or Multistructural statements for the purpose of 
demonstrating the differences between these classification systems.   

1. “you repeatedly subtract one from n” (Brown_TR) 

2. “we’re counting down to one” (Orange_TL) 

3. “n only gets smaller as you keep going” (Orange_TR) 

4. “it will turn negative” (Purple_TR)  

5. “you start with n and then you’d n minus one and then once you do that then subtract 

one from whatever you get and keep going.” (Rick: Yellow_BL) 

The first quotation describes the process of “repeatedly subtracting one from n.” Even 
though “subtract 1 from n” describes a single line of the code, with minimal rephrasing from 
the actual syntax, the use of the word “repeatedly” refers to the combined action across 
multiple function calls and therefore is an example of a multiline summary. This quotation falls 
short of the SOLO taxonomy category of Relational, which Whalley et al. (2006) describe as 
“provides a summary of what the code does in terms of the code’s purpose.” While the 
participant summarizes the code, this summary is not strictly “in terms of the code’s purpose.” 
Recall that Whalley et al. (2006) describe the SOLO taxonomy category of Multistructural as 
characterized by a “line by line description is provided of all the code.” This quotation would 
not be classified as Multistructural, because the participant does not describe all lines of code.  

Similarly, the phrase from the second quotation of “counting down” refers to multiple 
executions of a process of counting down and is an example of a multiline summary. Unlike the 
first quotation that included a minimally rephrased description of a single line of code, this 
second quotation describes subtracting one as “counting down.” Coincidentally, describing the 
process of subtracting one as “counting down” maps reasonably well to the SOLO Relational 
category because, as described by Whalley et al. (2006), the participant summarizes the line of 
code “in terms of the code’s purpose,” which could be described as to count “down to one.” 

The third quotation does not explicitly mention the operation of decreasing the value of 
n, only that “n only gets smaller.” This again provides a summary across multiple recursive calls 
of how the value of n changes and therefore is a multiline summary. However it does not 
reference a goal or include summaries of all lines of code and is therefore not classifiable as 
Relational or Multistructural, respectively. This third quotation is also less specific than the first 
or second. It indicates the direction of change for the value of the variable n and not the 
magnitude.  In some cases this lack of specificity may be productive for reasoning about parts of 
code in which the details omitted are not important. 
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The fourth quotation is that “it will turn negative,” which describes the changes in value 
of the variable n. Unlike the previous quotations, this does not mention a continuing process 
created by multiple function calls. Instead, this identifies a specific point within the sequence of 
recursive calls at which point the value of the variable n “will turn negative.” The point at which 
this transition occurs can be mapped to a specific line of code. However, this specific point 
where the value of the variable n becomes negative is within a progression of function calls. 
This context makes this not only a description of a single line of code, but how that line 
functions within a larger context and therefore is a multiline summary. Like the third quotation, 
this quotation is not classifiable as either Relational or Multistructural. 

More than the other examples, the final quotation describes a specific line of code. The 
participant included the phrase, “and you keep going” in reference to the process of subtracting 
one, but the language in this quotation is more directly tied to a single line of code and a single 
transition to a second recursive call. For example, two executions of the same line of code are 
mentioned, first that “you’d minus one” and then that you’d “subtract one from whatever you 
get.” I classify this as a sequential set of single-line summaries. This quotation is included to 
show an example of a summary that includes multiple lines of code, but I do not classify this as 
a multiline summary.  

This set of quotations showed multiline summaries that were and were not possible to 
classify as Relational and Multistructural. This serves to show some of the inconsistency in the 
SOLO taxonomy and the need for an additional theoretical term to describe what may be an 
important inference in tracking program state.  

Participants’ Partial Descriptions of State Change for the Variable x 
It was common for students to make generalizations regarding the value of the variable 

x on the infinite-loop question. Recall that whether or not the function produces an infinite 
loop is independent of the value of the variable x. However, the value of the variable x is not 
irrelevant in the context of tracing the function because the return value of the function is the 
value of the variable x raised to a power. In the previous section I analyzed the extent to which 
the participants’ statements provided a multiline summary and not a single-line summary or a 
sequential set of single-line summaries about the state of the variable n. Participants’ 
summaries regarding the variable x did not have the same form. Here I justify why this full set 
of quotations should be classified as multiline summaries, rather than justifying the 
classification of individual quotations. 

Participants typically described the independence of the value of the variable x and 
whether or not the function produces an infinite loop, but did not connect that to a specific line 
of code. Only two of the quotations below provided a reference to a line of code. The quotation 
listed second to last says “you’re not changing x.” This is an accurate statement because each 
recursive call passes the unchanged argument x to the function. Although the participant does 
not mention a specific line of code, no other lines change the value of x and therefore a single 
line of code is responsible for the truth of this statement. The only other statement that 
includes even an indirect reference to a single line of code is the participant that said “so it’s n 
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that matters,”  which can be seen as making reference to the base case test (= n 1). The 
important pattern to note is that few of the participants’ summaries of the variable x include 
references to specific lines of code. 

The question becomes whether these statements regarding the variable x should be 
classified as multiline summaries. Although most participants do not reference the line of code 
that guarantees that the value of x remains constant, it is the repeated execution of a single line 
that provides the behavior that is then described by the participant. Therefore I classify these 
statements as multiline summaries because of the content of each describing the role or 
behavior of the variable x. The definition of multiline summaries is intentionally quite broad. 
The higher-level category of partial descriptions of state change includes both multiline and 
single-line summaries and I expect that both of these sub-categories could be further 
subdivided.  

I outline some of the patterns from among the participant quotations regarding the 
variable x, presented in the same order as the quotations shown below. The patterns within 
these quotations help again to demonstrate the range of examples of multiline summaries. One 
of the expected dimensions of my definition of the multiline summaries construct is that 
identifying a particular statement as a multiline summary does not indicate that this summary is 
correct or faithfully explains the behavior of multiple lines of code. A number of the following 
quotations demonstrate this feature and instances are noted below.  

1. “x could be anything” (Brown_TL) 

2. “x can be anything” (Orange_TR) 

3.  “x can be whatever it wants… but it doesn’t matter what x is because it’ll still return a 

value if it’s 0 or less than 0.” (Orange_TL) 

4. “the x can be whatever it wants” (Red_TL) 

5. “x is independent of anything, you’re just multiplying it” (Yellow_TR) 

6. “it’s independent of x because x is whatever is returned” (Orange_BR) 

7.  “it shouldn’t matter what x is” (Blue_TL) 

8. “x doesn’t really matter, so it’s n that matters” (Brown_BR) 

9. “it doesn’t matter what x is… you’re not changing x” (Rick: Yellow_BL) 
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10. “it doesn’t seem that there should be any restrictions on x to return a value” 

(Purple_TR) 

Two participants (1 & 2), with almost identical language, claimed that “x could be 
anything” and “x can be anything.” These participants provided no justification and made no 
reference to the line of code responsible, but their statements are very similar to the correct 
conclusions that x can be any number.  

Two other participants (3 & 4) used anthropomorphic language to describe the 
constraints on the variable x. Both of these participants used the phrase “whatever it wants” in 
reference to the selection of the x value. One of these participants was explicit regarding why 
the variable x “can be whatever it wants” and explained that “it doesn’t matter what x is 
because it’ll still return a value if it’s 0 or less than 0.”  

On the other extreme, two participants (5 & 6) used the technical term ”independent” 
to describe the relationship of the value of the variable x and whether or not the function will 
return a value. One participant justified that “you’re just multiplying it.” It is true that you are 
using the value of the variable x in a multiplication operation. However, in terms of justifying 
the independence of x, the real justification is that x does not determine when the base case 
has been reached and instead determines the return value, as the participant said, through 
“multiplying.”  The second participant that used the phrase “independent” justified this claim by 
saying that “x is whatever is returned.” As with the previous participant’s justification that 
“you’re just multiplying it,” this participant doesn’t mention the fact that x does not determine 
when the base case is reached. The justification that the second participant provides that "x is 
whatever is returned” is both sometimes inaccurate and is irrelevant to whether or not the 
function produces an infinite loop. First of all, some power of x is returned, which is sometimes, 
but not always, equivalent to x. Second, whether or not the value of x is returned is irrelevant 
to whether or not x determines whether the base case can be reached. Despite these two 
participants’ insufficient justifications, they provide an appropriate technical label for the 
relationship between the value of the variable x and whether or not the function will return a 
value.  

Three participants (7, 8, & 9) discussed whether the variable x will “matter.” One 
participant asserted that “it doesn’t matter what x is,” and also mentioned that “you’re not 
changing x.” This secondary comment would likely be helpful for tracing the value of the 
variable x, because if “you’re not changing x” it is not necessary to attend to the value of the 
variable x. The other two participants who used the word “matter” sounded less confident in 
their responses. The first said “it shouldn’t matter what x is” and indicated some lack of 
confidence through his tone and use of the word “shouldn’t.”  The other participant explained 
that “x doesn’t really matter, so it’s n that matters.” It is accurate that only n matters for 
whether or not the base case will be reached, but the participant is slightly imprecise with their 
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language by not clarifying that x is relevant to the output of the function. Again, this 
participant’s tone sounded less confident than the first participant described in this paragraph.  

The final quotation (10) is similar to the others, but does not fall into any of the previous 
clusters of responses. With some hedging language, “it doesn’t seem that,” the final participant 
claimed that there shouldn’t be “any restrictions on x to return a value.” The sentiment in this 
participant’s statement is not unique; only the language of “restrictions” was unique in the 
sample of participants’ answers to the infinite-loop question. 

The generalization regarding the independence of the number of recursive calls made 
and the value of the variable x could be beneficial to an individual tracing the recursive function 
because they could use this generalization to focus their attention on the value of the variable 
n. Tracing recursive functions can require tracking a number of variables simultaneously. Insight 
regarding the roles of those variables may provide the opportunity to check the tracing of 
individual variables or to recognize when and why the values of particular variables will be most 
important for the purpose, narrowing the individual’s focus and avoiding distractions. 

Conclusions 
The above analyses detailed some patterns and subtleties in participants’ partial 

descriptions of state change for the variables x and n. However, this analysis did not answer the 
open question of what advantage could be provided when tracing the recursive function. I 
expect that being able to describe the patterns of state change such as the partial descriptions 
of state change I described here is important to programming competence.  Given that 
participants answered the tracing question before the infinite-loop question, my answer to this 
question is not justified with data. However, it is possible to justify this expectation even from 
the fact that experts in the domain of computer science would be capable of generating what I 
refer to as partial descriptions of state change, including both multiline and single-line 
summaries.  

Beyond that justification, attending to these patterns of state change could be helpful to 
an individual when tracing a recursive function call. One of the challenges of tracing through 
recursive functions is tracking the state of variables across each recursive call. Recognizing 
patterns of state change could provide a resource to check the specific steps when tracing the 
state of variables in a set of recursive calls or even to avoid duplicate or unnecessary checks. 
This type of mechanism for checking an individual’s detailed tracing of a function may be a 
significant resource for successfully tracing a recursive function.  

The recognition of these patterns of state change can be seen as distinct from the 
process of tracking specific elements of state. Using an analogy of the mind as a computer, a 
computer, when executing recursive calls, does not have a mechanism to identify these 
patterns of state change and it would require an additional mechanism. So too, this requires 
two paths of reasoning for an individual, which may or may not be an integrated cognitive 
process for a human. However, building upon the analogy of the mind as a computer we can 
think of tracking individual elements of state and developing partial descriptions of state 
change as being two distinct tasks. The first is to trace through individual lines of code and to be 
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able to determine for any input, the resulting behavior of the function. A second is to be able to 
describe this pattern of behavior for relevant ranges of input. The infinite-loop question 
appeared to orient students to noticing details about the function that are at this second level 
of description.  

To validate the hypothesis that multiline summaries support individuals in coordinating 
state, additional data would be needed. A study could compare individuals’ performance on 
various tracing and infinite-loop questions and vary the ordering of these questions. This could 
assess if the type of reasoning students used to answer the infinite-loop question is used 
productively when tracing the question if they first reason about the cases that produce an 
infinite loop. However, even if this does not spontaneously occur, a teaching study could be 
used to attempt to elicit this type of transfer. An additional hypothesis to test is that the clinical 
interview provided support for examples of multiline summaries, but that the same questions 
outside of an interactional interview would not prompt this reasoning pattern. These forms of 
investigation could help us develop techniques for scaffolding students in developing multiline 
summaries and I believe we may be able to achieve more scaffolding than is provided by the 
prompt “describe in plain English” (Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 
2009).  

The following chapter will continue to explore participants’ competence on the infinite 
loop question by refining hypotheses regarding what intuitive knowledge about infinite loops 
and base cases that may have supported this competence. A question that will remain 
unanswered is why the infinite-loop question elicited this intuitive knowledge while the tracing 
question did not. 
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INTUITIVE KNOWLEDGE ABOUT BASE CASES AND INFINITE LOOPS  
A body of computer science education research investigates students’ understanding of 

the concept of recursion (Kurland & Pea, 1989; Kahney, 1989; George, 2000; Clancy, 2004). This 
previous research shows that students experience persistent difficulty understanding the 
concept of recursion. However, I know of no research that identifies aspects of recursion that 
are unproblematic for students. In addition, I know of no research that analyzes which aspects 
of recursion are built on, or could be built on, robust intuitive resources. To investigate these 
undocumented aspects of individuals’ understanding of recursion, I analyze students’ intuitive 
resources about infinite loops and base cases from an interview study with introductory 
programming students. I found that participants’ explanation of how to create an infinite loop 
in a particular recursive function were accurate, used varied non-technical language, and may 
have built upon intuitive knowledge. This was true even for participants that demonstrated 
poor performance when attempting to trace the same recursive function. The central question 
in this chapter is: what prior knowledge accounts for participants’ robust reasoning regarding 
infinite loops? 

The analysis in this chapter is governed by the Knowledge in Pieces theoretical 
framework (diSessa, 1993), which motivates the analytic focus on students’ strengths rather 
than the typical focus on students’ weaknesses (Smith, diSessa, and Roschelle, 1993). Smith, 
diSessa, and Roschelle (1993) critique research focused on identifying misconceptions as 
characterizing participants’ prior knowledge as fundamentally unproductive.  They argue for 
developing more comprehensive models of participants’ learning so as to better understand 
the role of prior knowledge and both students’ strengths and weaknesses.  The current study is 
in line with the research direction set out by Smith, diSessa, and Roschelle (1993) and has both 
theoretical and practical relevance to computer science education. This direction has 
theoretical relevance; we have only partial understanding of the learning process without 
exploring the role played by prior knowledge in both successful and unsuccessful learning 
attempts. This direction also has practical relevance; we may be able to develop pedagogy that 
capitalizes on participants’ intuition and prior knowledge as has been done in other domains 
(e.g., diSessa & Minstrell, 1998).  

The motivation for this and the previous chapter was the fact that students who 
demonstrate some lack of understanding of recursion were still correct in reasoning about the 
cases that produce an infinite loop. All of the seventeen students that participated in the study 
demonstrated correct reasoning and arrived at the correct answer for the infinite-loop question 
shown in Figure 41. This is surprising and worthy of study because participants’ proficient 
reasoning regarding infinite loops accompanied a variety of levels of overall proficiency with 
recursion on the tracing question shown in Figure 41.  This pattern need not be universal to 
motivate the current exploration, because it may be possible to support individuals to achieve 
the same performance. Motivated by these general patterns of participants' correct reasoning, I 
set out to analyze the nature of the participants’ knowledge about infinite loops and base 
cases.  
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(define (whatIsIt x n) 

   (if (= n 1) 

        x 

       (* x (whatIsIt x (- n 1))) )) 

 
What value is returned by (whatIsIt 4 4)? 
A) 8 B) 16 C) 24 D) 64 E) 256 
Figure 40. The “tracing question”: a translation of a question from the 1988 APCS exam. 

Which of the following is a necessary and sufficient condition for the function WhatIsIt to 

return a value if it is assumed that the values of n and x are small in magnitude and are both 
whole numbers? 
A) n > 0  

B) n = 0  

C) n > 0 and x > 0 

D) x ≤ n and n > 0 

E) n ≤ x and n > 0 

Figure 41. The “infinite-loop question”: a replication of a question from the 1988 APCS 
exam. 

To develop hypotheses about the nature and origins of participants’ knowledge of 
infinite loops and base cases I build upon both a line of work in cognitive linguistics (Lakoff & 
Núñez, 2000; Lakoff & Johnson, 1980), which I will refer to as Metaphor Theory, and the 
Knowledge in Pieces theoretical framework (e.g., diSessa, 1993). The ideas that I build upon 
from both Metaphor Theory and the Knowledge in Pieces theoretical framework relate to 
students embodied experience. The research program was designed to identify plausible 
undocumented potential connections between out-of-domain knowledge and computer 
science and not to validate a particular connection. Therefore these connections between 
embodied experience and computer science are at least somewhat speculative and would 
require additional research to refine or validate. However, with the data available I show that 
these hypothesized connections are plausible and warrant additional investigation.  

Content logs were created of all video data and notes were made regarding segments of 
interest and possible patterns.  With this process, I identified the pattern that participants 
demonstrated correct reasoning and articulate explanations on the infinite-loop question 
despite many participants having difficulty tracing the same function.  

All participants’ solutions to the infinite-loop question were transcribed. From these 
transcripts and associated video clips, I developed local hypotheses that were refined by 
considering more data. This was an iterative process informed by the methodology described 
by Engle, Connant, and Greeno (2007). For example, an initial hypothesis was that participants’ 
competence on the infinite-loop question might be because the function WhatIsIt was 

particularly easy for students to reason about. This was an initial hypothesis that was rejected 
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because many participants demonstrated incorrect reasoning on the tracing question and 
correct reasoning on the infinite loop question.  

A second initially plausible hypothesis, which was later rejected, related to participants 
providing memorized responses. I use the phrase “memorized response” to label a situation in 
which a phrase presented in formal instruction is repeated by a participant without changes or 
with insignificant changes to wording. In the analysis I provide a representative selection of 
participants’ statements about infinite loops and base cases to show that participants’ language 
for describing infinite loops was varied and non-technical. I claim these characteristics are 
unlikely in a memorized response. This serves as both motivation for the later analysis and as a 
result documenting a competence of the research participants. 

The analysis is broken into hypotheses regarding the nature and origins of participants’ 
knowledge of infinite loops and base cases.  

The first hypothesis explored in this chapter is that an individual’s understanding of 
infinity or components of that understanding can support their reasoning about infinite loops. I 
developed this hypothesis from the data by applying both Metaphor Theory and the Knowledge 
in Pieces theoretical framework. In Metaphor Theory, Lakoff and Núñez (2000) articulate the 
way in which individuals’ understanding of infinity builds upon their understanding of ongoing 
iterative processes. I describe this embodied knowledge identified by Lakoff and Núñez (2000) 
and how it may relate to students’ understanding of infinite loops. I hypothesize that this same 
resource that Lakoff and Núñez (2000) claim supports an understanding of infinity, individuals’ 
understanding of ongoing iterative processes, supports participants’ reasoning about infinite 
loops. From the Knowledge in Pieces perspective I discuss how this intuitive knowledge may be 
supported by a previously undocumented p-prim that I refer to as the repeating p-prim. 

I observed that some of the participants’ statements about base cases could be 
interpreted as using physical language and in this chapter I develop hypotheses about the 
nature of participants’ knowledge of base cases by applying both Metaphor Theory (Lakoff & 
Núñez, 2000) and Knowledge in Pieces (diSessa, 1993). My application of metaphor theory 
suggests that students used two metaphors when describing base cases, and I will refer to 
these as Base-Case-State-as-a-Destination and Base-Case-State-as-a-Goal. My application of 
Knowledge in Pieces suggests that students used the blocking p-prim to reason about the 
blocking role of the function’s base case.  

My analysis sought to identify potential sources of individuals’ competence on the 
infinite loop question by analyzing the language participants used to describe infinite loops and 
base cases. This analysis also highlights potentially rich sources of knowledge that may support 
pedagogy for teaching recursion. I did not set out to validate these hypotheses, but through 
developing the hypotheses from the data I have connected computer science education to both 
the Knowledge in Pieces theoretical framework (diSessa, 1993) and Metaphor Theory (Lakoff & 
Núñez, 2000). In particular, I provide two contributions to Knowledge in Pieces theory. First, I 
propose as previously unidentified p-prim that I refer to as the repeating p-prim. Second, in 
developing this p-prim I propose a clarification of diSessa’s claim that p-prims are inarticulate 
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(1993) and specify that although the use of a p-prim provides an expectation that an 
explanation is unnecessary, when it is brought to an individual’s attention he or she may still be 
able to generate an explanation or draw a conclusion that an explanation could be provided.  

Motivation: No Evidence of the use of a Memorized Response  
If students provided memorized answers to the infinite-loop question, it would provide 

an explanation for the observation that many students answered the infinite-loop question 
correctly even though they experienced difficulty on the tracing question. For example, I can 
memorize and recall statements from a variety of domains about which I am ignorant. 
Responding with this memorized statement in this case would not necessarily indicate an 
understanding of concepts from that domain.  

Such memorized elements may be present in the knowledge system of a student with 
limited knowledge. However, they may also be present in an expert’s knowledge system. For 
example, an expert physicist certainly has memorized the phrase “F=ma.” For an expert 
physicist, this phrase may be encoded as this specific and very familiar phrase, but the phrase 
also relates to the expert’s understanding of forces, mass, and acceleration. Therefore a 
“memorized response” is not necessarily a statement devoid of conceptual meaning. However, 
eliminating a memorized response as the source of participants’ explanations implies that 
participants constructed an explanation based upon their knowledge, which might not be the 
case when generating a memorized response. 

I expected a memorized response to include technical language already introduced in 
the course. Given that the majority of the participants were enrolled in the same course, I 
expected that a memorized response used by one participant would show up as repeated 
sequences of words used by multiple participants. Even if this language were non-technical it 
might be widely used by students if it was introduced in the course.  

I present quotations in which participants discussed infinite loops and base cases when 
answering the infinite-loop question. The quotations are used to verify that participants did not 
display evidence of what I defined as a “memorized response,” which is a phrase presented 
during formal instruction that is repeated by a student without changes or with insignificant 
changes to wording. This would include technical language or systematically repeated phrases 
among participants. General patterns among these quotations are noted, but are tangential to 
the primary finding that participants did not appear to use memorized responses. This finding is 
used here to motivate the further analysis of participants’ responses.  

Table 2 shows quotations from participants who described an infinite process when 
answering the infinite-loop question. Participants alluded to the infinite process using everyday 
words such as “continues” (Brown_TL) and only one participant used the technical phrase 
“infinite loop” (Orange_TL). Some students described the unending nature of the process by 
mentioning that it “goes on forever” (Green_TL) or “forever and ever and ever” (Green_TR) or 
by using words such as “infinitely” (Orange_BR) and “infinity” (Brown_TR). Three students 
focused on the lack of a stop or end of an infinite loop again without using this technical term. 
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They said that the “function never stops” (Brown_TR), that it is “never going to end” 
(Orange_TL), and that it will keep going “unless it like stops” (Purple_TL).  

Table 2. Participant descriptions of an infinite process. 

 “it just continues being called” (Brown_TL) 

 “just keep doing it” (Yellow_TR)  

 “it just goes on forever” (Green_TL) 

  “the problem will go on forever and ever and ever” (Green_TR) 

 “then it will go on infinitely” (Orange_BR) 

 “the function never stops , it just repeats itself till infinity” (Brown_TR) 

  “it’s never going to end; it’s going to be an infinite loop.” (Orange_TL) 

 “this will continue to keep on going unless it like stops” (Purple_TL) 

 “then you go down to negative infinity oblivion” (Scratch_Th) 

 

Table 3 shows a collections of quotations in which participants describe the base case 
when solving the infinite-loop question. There was a variety of language used to describe the 
base case; for example, participants said that “n has to be able to become one” (Orange_TR) 
and that you “have to eventually get n equals one” (Red_TL). Participants also talked about the 
“condition” (Red_TR & Orange_BR) that needed to be “satisfied” (Red_TR & Red_TL) or 
“fulfilled” (Orange_BR). Only a single student used the technical language of “base case.” Again, 
there are patterns in the participants’ responses, but we can see no systematically repeated 
phrases or technical language. 

Table 3. Participant descriptions of base cases. 

  “it equals one and the program stops” (Brown TR) 

 “n has to be able to become one in the end” (Orange_TR) 

 “you actually have to eventually get n equal to one” (Purple_TR) 

  “this will keep on going on until n equals one” (Red_TL) 
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 “we know that we need to get n equal to one” (Yellow_BR) 

 “for your recursion to stop your ending condition could be satisfied” (Red_TR) 

 “you want to get to n equals one to satisfy this part” (Red_TL, duplicate words removed) 

 “this is the condition that has to be fulfilled” (Orange_BR) 

 “this is like your exit function right? (referring to the test n==1)” (Purple_TL) 

  “if n is one, n would just come in here (referring to the true case of the conditional)” 

(Scratch_Th) 

 “N must be greater than 0, so that it can return x” (Brown_BR) 

 “the base case is n equals one” (Yellow_BL) 

 

The variety of the participants’ language suggests that they had not simply repeated 
language they had learned in their programming class. It is unlikely that students would have 
used such a varied set of non-technical language to describe a technical process introduced in 
their programming course if it was completely unconnected to their prior knowledge and 
experience.   This result that students were unlikely to be providing memorized responses 
serves as motivation for the following analyses, which discuss hypotheses for the nature of 
participants’ knowledge about infinite loops and base cases.  

Previous Research  

Potential Infinity and Actual Infinity 
A potentially prerequisite concept for understanding infinite loops is the concept of 

infinity. There has been extensive developmental research on children’s understanding of 
infinity (Evans, 1983; Monaghan, 2001; Falk, 2010), which informs my assessment of the 
plausibility of this hypothesis. 

Here I review a recent article that summarizes the development of children’s 
understanding of infinity (Falk, 2010). Based upon previous research, Falk identifies 
components of infinity that are more and less understood by individuals. For example, she 
separates two models of infinity: potential infinity and actual infinity. Potential infinity is 
identified as a process such as counting that progresses toward infinity, which Falk and others 
have identified as easier to understand. Falk (2010) summarizes from other studies “that 
children’s repeated experience of forming successors while counting eventually leads, by 
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induction, to conceiving the unending succession.” (p. 27).  The more difficult idea of actual 
infinity represents infinity as an object, which in reality can never exist.  

Falk (2010) summarizes that “roughly from about age 8 on, children grasp potential and 
actual infinity." (p. 1). This developmental finding removes concern that the population of the 
current study, college students, would lack rudimentary understanding of infinity. It is 
important to note that this expectation that participants “grasp” (p. 1, Falk, 2010) infinity does 
not imply that these ideas will be accessible or productively used by participants in a new 
context like computer programming; it only implies that a grasp of infinity could serve as a 
resource. 

Falk (2010) and other researchers investigating children’s understanding of infinity (e.g., 
Evans, 1983; Monaghan, 2001) typically use developmental studies and do not develop models 
regarding the nature of this knowledge. I continue with a variant of the hypothesis that 
participants’ knowledge of infinity contributed to their competence, but turn to research that 
discusses the nature of this knowledge.  

Metaphor Theory and the Basic Metaphor of Infinity 
In the development of my hypotheses about the nature of participants’ knowledge 

about infinite loops and base cases, I applied what I refer to as Metaphor Theory. This line of 
research from cognitive linguistics has had many contributors over the past 30 years. I will 
ground my description of Metaphor Theory in the work of George Lakoff and colleagues (Lakoff 
& Johnson, 1980; Lakoff & Núñez, 2000). Lakoff and Núñez (2000), summarizing this lineage of 
research that I refer to as Metaphor Theory, claim that  

"One of the principal results in cognitive science is that abstract concepts are typically 
understood, via metaphor, in terms of more concrete concepts. This phenomenon has 
been studied scientifically for more than two decades and is in general as well 
established as any result in cognitive science” (p. 40-41, Lakoff & Núñez, 2000).  

Lakoff and colleagues (e.g. Lakoff & Núñez, 2000; Lakoff & Johnson, 1980) map the 
language individuals frequently use when describing or discussing a topic to a metaphor or set 
of metaphors that make that use of language intelligible. For example, they provide examples in 
which affection is “understood in terms of physical warmth” (p. 41, Lakoff & Núñez, 2000). 
Using words like “warm,” “cold,” “icy,” and “ice” in a sentence about affection makes use of 
this metaphor. These examples of language are assumed to be comprehensible only through 
the unconscious interpretive lens of this metaphor.  

A central claim of Lakoff and Núñez (2000) is that these metaphors are embodied, or 
developed through physical experience. They explain how the concept of infinite processes and 
what they call the Basic Metaphor of Infinity (BMI) is developed despite the fact that no 
embodied experiences are truly infinite. The central claim underlying the Basic Metaphor of 
Infinity is that indefinite processes are conceptualized as iterative processes, which are 
processes that repeat. For example, counting can be conceptualized as an unending process. 
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Lakoff and Núñez (2000) argue that the source of knowledge about infinite processes is 
rooted in this aspectual system. Lakoff and Núñez (2000) identify the aspectual system as the 
area of the brain that processes the grammatical aspect of verbs. Grammatical aspect, distinct 
from tense, includes information regarding time, such as the duration of an action, the 
completion of an action, and the frequency of an action. 

Lakoff and Núñez (2000) make the frequently contested argument “that a considerable 
number of infinite processes in mathematics are special cases of the BMI that can be arrived at 
by specifying what the iterative process is in detail.” (p. 161, Lakoff & Núñez, 2000). While these 
claims regarding the application of the Basic Metaphor of Infinity to various topics have been 
contested (e.g., Schiralli & Sinclair, 2003), I know of no critics who challenge the claim that 
individuals’ understanding of iterative processes could serve as a resource for other 
understanding, which is the aspect of the theory that is relevant to the current analysis. 

Hypotheses Regarding Infinite Loop Knowledge  

Relevance of Actual and Potential Infinity 
I believe that actual infinity is not relevant to understanding participants’ reasoning 

about infinite loops in recursive functions because the WhatIsIt function would not create a 
loop that could continue forever. Many of the students mentioned that the function would 
“crash.” This is a correct prediction for the WhatIsIt function, which in the case of an infinite 

loop would eventually fill up all available memory on the computer. This practical reality 
appears to eliminate the need for an understanding of actual infinity, which is the idea of 
infinity as an object, for understanding infinite loops in the WhatIsIt function. However, 

potential infinity (Falk, 2010), which is the idea of an unending succession, is a relevant idea for 
reasoning about infinite loops because infinite loops are often created through repeated 
execution of a function.   Therefore, an individual’s understanding of potential infinity is 
relevant, but not an individual’s understanding of actual infinity. 

Relevance of Iterative Processes 
 Lakoff and Núñez (2000) claim that individuals conceptualize many infinite processes 
(which by definition have no completion or result) as if they were an iterative process with an 
intermediate result. However, an infinite loop is an iterative process with intermediate results. 
Lakoff and Núñez (2000) explain that the intuitive roots of the Basic Metaphor of Infinity are an 
understanding of iterative processes and therefore the intuitive roots of the Basic Metaphor of 
Infinity are a plausible contributor to participants’ reasoning.  

The Hypothesized Repeating P-prim 
 diSessa (1993) developed a theory about a type of intuitive knowledge, which is 
frequently derived from physical experience. He referred to this intuitive knowledge as a 
phenomenological primitive or a p-prim for short. The theoretical framework chapter provides 
a more extensive description of p-prims. Here I build upon this theoretical framework to 
identify a p-prim that describes intuitive competence comparable to the experience with 
iterative processes discussed by Lakoff and Núñez (2000). I present this previously unidentified 
p-prim, the repeating p-prim, and how it connects to competence with infinite loops.   
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The Repeating P-prim 
Schematization: An identifiable pattern of behavior in or of a system is performed multiple 
times in sequence. The repetition is rhythmic and predictable, not random or unpredictable.  

Attributes: An identifiable behavior, regularity 

Relation to schooled physics: The earth repeats its motion around the sun, the earth spins on 
its axis, and the moon revolves around the earth. Individuals may see these behaviors as 
repeating a specific cycle and not as a dynamic process of forces and momentum producing a 
particular pattern of behavior. Another example is a heartbeat. When individuals think about a 
heartbeat, they are unlikely to draw upon the complex fluid mechanics knowledge that would 
be necessary to truly explain the phenomenon. Instead, a heartbeat can be conceptualized as a 
rhythmic and predictable repetition.  

Comments: The repeating p-prim is also present in everyday physical experiences such as 
walking and breathing. These both constitute identifiable patterns that are conceptualized as a 
single behavior that is repeated and are, without question, part of everyday experience. The 
repeating p-prim can also be seen in visible artifacts, such as the white lane lines on a freeway, 
which reoccur visually as you drive past.     

Proposed Modification to P-prim Theory  
P-prims provide a sense of obviousness for a phenomenon and with this sense of 

obviousness individuals can view the phenomenon as not needing an explanation. diSessa 
(1993) models p-prims as inarticulate, which means this sense of obviousness is not provided by 
an articulate description of the situation. The repeating p-prim initially appears to violate the 
methodological heuristic for determining p-prims in that they are not articulate (diSessa, 1993). 
I will provide an explanation for why I believe that this property of the repeating p-prim is likely 
to be true in some cases for other p-prims.  

I propose a clarification to the claim made by diSessa (1993) that p-prims are 
inarticulate. I do not challenge or attempt to amend that p-prims describe a range of 
phenomenon and do so without the use of language. I hypothesize that with directed attention 
an individual may override the view of the phenomenon as not requiring an explanation. I 
propose that if the need for an explanation is brought to his or her attention, in some cases an 
individual may also be able to articulate what they believe to be an explanation of the 
particular phenomenon or articulate that an explanation could hypothetically be provided. 

Sometimes, but not always, this explanation may be a scientifically accepted 
explanation. For example, consider a physicist interacting with the world around her. This 
physicist is capable of providing a scientifically-normative explanation for how a book rests on a 
table.  However, when moving objects around a desk, she does not need to reason about the 
placement of each book starting from first principles. Instead, she can rely on more primitive 
physical intuition such as the supporting p-prim. The supporting p-prim is schematized as 
“’Strong’ or stable underlying objects keeps overlaying and touching object in place.” (p. 220, 
diSessa, 1993). Her interaction with the physical environment can be guided by this inarticulate 
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p-prim and not her full explanation. It would be immensely inefficient if she always reasoned 
from first principles that the book will rest on the table. Again, this does not imply that the p-
prim itself is articulate, only that there can exist, in parallel to the competence of applying the 
p-prim, a competence to provide a correct scientific explanation.  

P-prims vary in the level of knowledge necessary to be able to provide what the 
individual believes to be an explanation for the phenomenon. The example above described an 
individual that could provide a scientifically-normative explanation, but an articulate 
explanation need not be scientifically normative to be an instance where an individual believes 
an explanation to be necessary. For example, the dying away p-prim  explains why an object 
that is pushed will eventually come to a stop. When applying the dying away p-prim the 
individual sees the phenomenon as requiring no explanation. However, if the need for an 
explanation is brought to their attention, many non-physics experts may believe that they can 
provide an explanation of this phenomenon. This may appear to violate diSessa’s claim that p-
prims are inarticulate (1993), but I propose that it is not necessary to assume that an individual 
could not produce an articulate explanation for the phenomenon addressed by the p-prim.  

Many situations in which the repeating p-prim can be applied may be seen as 
explainable. Consider the application of the repeating p-prim to understanding walking. I expect 
that in most cases individuals view walking as requiring no explanation, but if the need for an 
explanation is brought to their attention they may be able to provide what they believe to be 
an explanation of the phenomenon.  

In the example of the physicist, her hypothetical p-prim use when moving objects on a 
desk appeared disconnected from her scientific knowledge. The question remains whether the 
hypothesized repeating p-prim provides a similar type of inarticulate intuition for a class of 
phenomenon. Is it possible for an individual to use only the repeating p-prim to reason about a 
particular repeating phenomena and not their articulate knowledge? If this is not possible for a 
particular phenomenon, it implies that the repeating p-prim does not apply to the 
phenomenon. If the hypothesized repeating p-prim provides only articulate reasoning for all 
relevant phenomena it would not be classified as a p-prim.  

Hypotheses Regarding Base Case Knowledge  
 During the analysis, I observed that participants used metaphoric language in their 
explanations of base cases, which informed an initial hypothesis that metaphor, or the source 
domain of these metaphors, provided resources that produced the competent performance 
observed on the infinite-loop question. I developed and present two hypothesized metaphors 
used by the participants. I have named these two metaphors, Base-Case-State-is-a-Destination 
and Base-Case-State-is-a-Goal, using the naming conventions used by Lakoff and Núñez (2000). 
I provide brief quotations from the participants’ responses to the infinite loop question to 
demonstrate some of the use of metaphoric language specifically aligned with each of these 
metaphors. I hypothesize that the blocking p-prim (diSessa, 1993) may be productive for 
reasoning about base cases and that participants’ use of physical language may be evidence of 
the use of the blocking p-prim.  
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The first hypothesized metaphor is referred to as Base-Case-State-is-a-Destination. The 
participants sometimes discussed the state that satisfies the base case as if it were a physical 
location or destination. The metaphoric language in these examples suggests a physical arrival 
at a stopping condition. For example, the variable n was described as needing to have “got to” 
(Purple_TL) or to “reach” (Purple_TR) a location or state.  Another participant described the 
infinite loop case as “it will never hit an end to the recursion.” (Purple_TR). The language of “hit” 
suggests that the “end to the recursion” is a physical location that can be “hit.” Another 
participant explained the non-infinite loop case as “it will eventually hit n equals 1 at one point” 
(Red_TL).  This participant’s statement included a similar use of the word “hit” and the phrase 
“at one point,” which suggests the passage of time and is consistent with a metaphor of 
reaching a physical location.   

The second hypothesized metaphor will be referred to as Base-Case-State-is-a-Goal. 
There was another set of participants that described the state that satisfies the base case as a 
goal without the physical language shown above. The following examples are consistent with a 
non-physical specification of the word goal.  Participants mentioned that you “have to have n 
equal to 1” (Red_TR), “have to eventually get n equal to 1” (Purple_TR),  and that n “has to be 
able to become one in the end” (Orange_TR). In addition to these examples that emphasized 
the need or goal for the value of the variable to equal one, other participants described this 
goal as something that the code needed to “satisfy” or “fulfill.” For example, participants 
explained that the base case condition “has to be fulfilled” (Orange_BR), and that “you want to 
get to n equals one to satisfy this” (Red_TL), and that “we need to get n equal to one” 
(Yellow_BR).  

I do not have evidence from my study that metaphor functioned to determine 
individuals’ reasoning. However, given the observation of metaphoric language, metaphor may 
have contributed to individuals’ reasoning. From the Knowledge in Pieces theoretical 
framework, I assume that individuals may appear inconsistent in their reasoning and therefore 
may be inconsistent in their metaphor use. This challenges the idea that metaphor shapes 
individuals’ reasoning patterns. I expect that there is diversity in individuals’ cognitive resources 
and that metaphor may enable the application of cognitive resources that might not otherwise 
be applied. For example, in the case of the Base-Case-is-a-Destination metaphor, an individual’s 
knowledge and experience of destinations may support reasoning about base cases. Perhaps 
even this use of metaphoric language suggests that this could be a productive anchor for 
students’ understanding of base cases.  

Based upon analyzing my data using ideas from the Metaphor Theory, I conclude that 
students can use metaphoric language to describe the state that satisfies the base case. 
However, I cannot claim that a single metaphor or even a set of metaphors is responsible for 
the competence observed because in the data corpus not all students used a single metaphor 
and individual students used metaphoric language intermittently.  Because Lakoff and Núñez 
(2000) present hypothetical instances of metaphor use, and not from naturally occurring 
speech, I do not have a reference for what level of uncertainty should be expected in 
participants’ statements.  
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If we were able to identify a single metaphor that was responsible for the competence 
with base cases, say the Base-Case-is-a-Destination metaphor, pedagogically relevant questions 
would remain with regards to the nature of individuals’ knowledge about destinations. What 
knowledge and types of knowledge about destinations are utilized when using the metaphor? 
How do differences in individual’s knowledge about destinations shape their use or 
understanding of this metaphor?  There may be a p-prim, which is a description of physical 
intuition built by experience, which contributed to reasoning about base cases and can shed 
light on the nature of participants’ embodied knowledge. 

diSessa (1993) schematized the blocking p-prim as explaining when “an object's 
tendency toward motion is thwarted by another object in its path” (p. 133, diSessa, 1993). This 
can be seen as a rough approximation of the role of a base case in preventing continued 
execution of a recursive function providing correct intuition. I hypothesize that the blocking p-
prim may be productive for reasoning about base cases and that participants’ use of physical 
language may be evidence of the use of the blocking p-prim.  

diSessa explains that the blocking p-prim does not imply agency. “Blocking (what a 
heavy brick does to a hand striking it) and bouncing impute no agency, but are kinematic, as it 
were, describing phenomena visually and geometrically.” (p. 128, diSessa, 1993). This lack of 
agency is consistent with the participants’ statements about base cases because only the 
variable n and the recursive function were described as actors and never the base case. Instead, 
the base case was something that you “got to” (Purple_TL), could “reach” (Purple_TR) or even 
“hit” (Purple_TR). These descriptions appear to be spatial, which is consistent with the genesis 
of the blocking p-prim in physical experience.  

diSessa describes that the development of physics mastery requires decomposing the 
behavior described by the blocking p-prim into relevant forces and that the blocking p-prim 
alone provides a naïve and not scientific explanation of some physical situations. Similarly, in 
the computer science context, the blocking p-prim is relevant to how the recursion stops, which 
is actually through the absence of the recursion being continued by a recursive call and not 
through blocking per se.  

Conclusion  
Recursion is typically identified as one of the most difficult concepts in computer 

programming and novice programmers frequently make mistakes in writing recursive functions, 
which sometimes generate infinite loops. The data presented in this chapter contrast the 
community’s perception of the difficulty of recursion by identifying an area of strong intuitive 
knowledge, which supports correct reasoning about some aspects of recursive processes. I 
argue that some components of infinite loops are “easy” and I have demonstrated what may be 
some substantial strength for reasoning about infinite loops in recursive functions. From a 
theoretical perspective, this is important progress toward the goal of developing a theory 
regarding the nature of programming knowledge and knowledge of recursion more specifically.  
This is not intended as an argument that competence with recursion is in fact easy to acquire, 
only to present hypotheses about specific intuitive knowledge on which additional competence 
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could be built.   
 I documented participants’ varied and non-technical language to describe infinite loops 
and base cases. I claimed that because of these features participants were unlikely to be simply 
repeating memorized phrases from instruction when answering the infinite-loop question. This 
motivated my investigation of the nature of the knowledge that participants used in this 
context. 

I concluded that individuals’ understanding of infinity, particularly some of the 
problematic aspects of this understanding, were unlikely to be necessary for reasoning about 
infinite loops. Instead, embodied knowledge that Lakoff and Núñez (2000) identified as 
supporting individuals’ understanding of infinity can be seen as relevant to understanding 
infinite loops. Lakoff and Núñez (2000) characterize this knowledge as derived from the 
aspectual system. To characterize the same knowledge I document what I believe to be 
relevant and previously undocumented p-prim, the repeating p-prim. In introducing this p-prim, 
I offer up a refinement to the model of p-prims, which is, in essence, that p-prims can exist in 
parallel with articulate explanations of the same phenomenon.  

Lastly, I documented that participants’ language to describe base cases used physical 
and metaphoric language. This could be evidence of the use of metaphor and I developed two 
potential metaphors that may have been used by participants. Building upon a similar direction, 
I proposed that the blocking p-prim (diSessa, 1993) may have provided a source of intuition for 
reasoning about base cases in recursive functions.   

 The work presented in this chapter sought to identify potential sources of 
intuitive knowledge with which to reason about infinite loops and not to validate a particular 
set of hypotheses. This chapter also connects computer science education research with other 
studies investigating the nature and sources of prior knowledge (diSessa, 1993; diSessa & 
Sherin, 1998; Lakoff & Núñez, 2000) and also highlights potentially rich sources of knowledge 
that may support pedagogy for teaching recursion. 
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SUBSTITUTION TECHNIQUES  
 The overarching goal of this research program is to better understand students’ out-of-
domain knowledge that is relevant to reasoning about computer programs. This chapter 
describes some connections between algebraic substitution and techniques that are applicable 
to reasoning about recursive functions in a computer science context.  

This connection between mathematical substitution and tracing recursive functions 
became a central focus when the participant Emily5 (participant identifier: TS_6) connected a 
technique she used to trace a recursive function with substitution in mathematics. She created 
the representation shown in Figure 42 and made the following comment, which is relevant to 
all of the substitution techniques described in this chapter.  

“Again like I was saying with the math. Math and then you just substitute in something 
for its equivalent value. Like if they tell you like y is equal to 5 (writes ‘y=5’) and then you 
see like 4 times y (writes ‘4*y’) Well you just have to do 4 times 5 (writes ‘4*5’).” 

 

Figure 42 Emily's representation of the connection between substitution in math and programming. 

 In Emily’s example the variable y is replaced with the value of 5. Emily described that 
you can “substitute in something for its equivalent value,” which is a central component for 
each of the substitution techniques described in this chapter.  

The primary audience for these descriptions is computer science educators. This chapter 
includes descriptions of four substitution techniques that I refer to as simulating execution, 
accumulating pending calculations, memoization, and solving it by hand. The purpose of this 
chapter is to provide a clear articulation and prototypical examples of each substitution 
technique. These techniques were identified within the data corpus of this dissertation and 
examples of students’ reasoning are narrated to provide an example of each technique. The 
examples show the techniques applied to linear recursion in a functional programming 
environment. I do not claim that these techniques describe all of the ways in which substitution 
can be used within computer science. This preliminary taxonomy is speculative and deserves 

                                                        
5 All names are pseudonyms 
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additional research and refinement. I will describe a program of future research. Even in the 
current form, I hypothesize that these substitution techniques are pedagogically valuable and 
discuss potential benefits in the discussion section. 

To aid in my description of these substitution techniques I use a typical definition and 
define a “recursive call” as a function call, within the body of a function, to that same function. 
The initial function call, which does not originate from within that function, does not constitute 
a recursive call; I will refer to that as the “initial function call.” Recursive calls are still function 
calls and I will refer to both initial functions and recursive calls as “function calls.” 

Table 4 shows diagrams of the four substitution techniques discussed in this chapter. 
The top rectangle in each diagram represents the function call that is being traced by the 
person using this technique. The other rectangles represent recursive calls and, in some of the 
diagrams, include calculations that are generated during execution of that recursive call. The 
arrows indicate the order in which the technique requires the individual to reason about each 
recursive call. Each of these techniques and accompanying diagrams will be described in detail, 
but even without these details it is possible to observe differences between the techniques in 
the relative order of execution. The first technique, simulating execution, begins at the initial 
function call and then progresses down to the base case and back up. The second substitution 
technique is accumulating pending calculations, which progresses only from the initial function 
call down to the base case. The third substitution technique is memoization, which progresses 
only from the base case up to the initial function call. The fourth substitution technique, solving 
it by hand, includes only the initial function call and the first recursive call, but does not 
consider other recursive calls or the base case. 

Table 4. Table of all substitution techniques 

Simulating Execution 

 

 

Accumulating Pending Calculations 
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Memoization 

 

Solving it by hand 

            

 

 

Leron and Zazkis (1986) also distinguished different orderings in which recursive 
functions could be considered. They generalized that mathematicians and computer scientists 
discuss recursive process as progressing in different directions. They claimed that 
“mathematicians think of the first part of the definition as a ‘start rule’, whereas computer 
scientists refer to it as a ‘stop rule’.” (p. 25, Leron & Zazkis, 1986) They provided a “likely” 
description of the factorial function from the perspective of both a mathematician and 
computer scientist. They claimed that a mathematician would justify that the “definition 
enables us to compute 1!, then 2!, then 3! And so on to any desired n” (p. 25, Leron & Zazkis, 
1986) whereas a computer scientist would justify that “we can compute n! as soon as we know 
(n-1)! , which in turn can be computed of we know (n-2)! , and so on until we reach 1!” (p. 26, 
Leron & Zazkis, 1986). In regards to execution order, the mathematician justification is most 
similar to the substitution technique of memoization while the computer scientist’s 
hypothetical justification is most similar to the substitution technique of simulating execution. 

 Leron and Zazkis (1986) discussed the similarity between recursion and mathematical 
induction. This is another possible connection between mathematics and computer science, but 
induction may be no less difficult for students than recursion. This is in stark contrast to the 
pedagogical recommendation of this chapter to build upon students’ competence with 
algebraic substitution, which I expect is unproblematic technique for many students.  

This chapter is inspired by the assumption of college students’ competence with 
mathematical substitution, but I do not develop a nuanced distinction between algebraic 
substitution and other related techniques within mathematics. Instead I use Emily’s example 
here as a prototypical example of what I believe to be a familiar and common process in 
algebraic reasoning. 

 In this chapter I attempt to specify different instantiations of this idea of “substitute in 
something for its equivalent value” in the context of recursive functions.  This set of 
substitutions may also be helpful for educators to provide students with specific techniques to 
trace or reason about state in recursive functions. Using more detailed analysis techniques such 
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as coordination class theory (diSessa & Sherin, 1998) in future work could help develop possible 
dependencies of applying these techniques.  

Methods 
 The set of substitution techniques was developed from observing the ways participants 
traced recursive functions. I was interested in the ways in which participants used substitution 
techniques to reduce the difficulty of tracing a recursive function that relied on principles of 
mathematical substitution.  

The cases were selected to attempt to capture clear examples of the substitution 
techniques. Since this work is preliminary the cases are used as an existence proof of these 
techniques and are not analyzed in depth. 

This chapter narrates participants’ solutions from two of the interview problems.  These 
narrations include my interpretation of participants’ statements and details of their apparent 
use of the substitution technique. These problems included the WhatIsIt and Mult recursive 
functions shown in Figure 43 and Figure 44 respectively. A full description of these functions 
and the questions in which they are found is located within the methods chapter.  

What value is returned by WhatIsIt(4, 4)? 
 (define (WhatIsIt x n) 

(if (= n 1) 
x 
(* x (WhatIsIt x (- n 1)))) 

a) 8    b) 16    c) 24    d) 64    e) 256 
Figure 43. The WhatIsIt Question, a replication of a question from the 1988 APCS exam, translated to Scheme.  

 

Figure 44. Reproduced version of the multiplication question from the 1988 APCS exam. 

 In my explanations of the substitution techniques I will use the factorial function shown 
in Figure 45, which calculates the factorial for an input x in the programming language Scheme.  



www.manaraa.com

 Substitution Techniques  

 91   
 

(define (fact x) 

 (if (<= x 1) 

  1 

  (* x (fact (- x 1))))) 

Figure 45. Example factorial function written in Scheme. 

Substitution Technique: Simulating Execution 

Description 
I refer to the first substitution technique as simulating execution. This is the traditional 

method of tracing recursive functions whereby the recursive calls are traced in the order they 
would be executed by a computer. The output from each recursive call is then substituted into 
the expression that generated that recursive call.  

For example, using the substitution technique of simulating execution to trace the 
function fact with the argument 4 would generate the recursive calls shown in Figure 46.  

             

Figure 46. Recursive calls generated by a call to (fact 4). 

 The underlined calls in Figure 46 are expanded from the top to the bottom. When the 
base case is reached, the value of 1 is substituted for the call (fact 1). This is multiplied by 2 
and the resulting value of 2 is substituted for the call (fact 2). This is multiplied by 3 and the 
resulting value of 6 is substituted for the call (fact 3). This is multiplied by 4 and the 
resulting value of 24 is substituted for the call (fact 4).  

Figure 47 shows my diagram of this technique. I will describe how each element of the 
diagram relates to the execution of recursive functions, but I do not assume that students using 
the technique will necessarily make the same set of connections. Each rectangle represents a 
function call. The rectangle shown on the top is the initial function call. The arrows to the right 
of these rectangles represent the instantiation of a recursive call. These arrows show the flow 
of control in a recursive function, which pauses execution within a particular function call when 
a recursive function call is made. In a final recursive call, corresponding to the base case where 
no additional recursive calls are made, the value returned by this recursive call is provided to 
the calling function that had paused execution. The substitution of this return value at each 
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step is shown with the arrows on the left of the rectangles. This also represents a change in 
what code is actively executed. An arrow indicates re-initiating execution, where pending 
calculation may be executed. Therefore the flow of control begins at the initial function call and 
then proceeds to each subsequent recursive call before eventually returning from each 
recursive call in sequence. Each arrow is essentially an instance of substitution; the downward 
arrows are substitutions that work as an expansion of a particular recursive call and the upward 
arrows are substitutions of return values from a recursive call. This representation is the most 
accurate in simulating the flow of control in a recursive function, because each time a value is 
substituted it corresponds to returning the flow of control to the stack frame for that previous 
call. 

 

Figure 47. Diagram of the simulating execution substitution technique 

Example 
 Figure 48 shows a representation created by a participant (participant identifier: 
Orange_TR) when tracing the call (WhatIsIt 4 4). This example was selected from apparent 
instances of simulating execution because it showed the most legible and most easily 
interpreted representation. Each line in her representation shows the expression that would be 
generated by the recursive call on the previous line. However, she did not show the initial 
function call (WhatIsIt 4 4). When the return value for each line is identified, starting from 
the bottom, this value can be substituted in the previous line. The participant did not identify 
each substitution, but summarized “and then you multiply all the fours,” which is consistent 
with the implied substitution in the representation.  

 

Figure 48. Written work on the WhatIsIt question by a participant (participant identifier: Orange_TR) 

 This substitution technique is valid for tracing embedded recursion, where the paused 
function has pending calculations to be executed when the flow of control returns.  
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Substitution Technique: Accumulating Pending Calculations 

Description 
This technique contrasts with the previous in that the calculations that are performed 

when returning control to a paused recursive function call are accumulated in a single 
expression containing all pending calculations. 

For example, using the substitution technique of accumulating pending calculations to 
trace the function fact with the argument 4 would generate the recursive calls and calculations 
shown in Figure 49. 

  

Figure 49. Recursive calls generated by a call to (fact 4). 

 Again the underlined calls to fact in Figure 49 are expanded from the top to the bottom. 
However, each line includes all pending calculations. For example, the expanded version of 
(fact 3) is substituted in to the expression (* 4 (fact 3)) to produce (* 4 (*3 
(fact 2))), which is shown on the third line in Figure 49. The same process generates the 
fourth line. Between the fourth and fifth lines the value returned by the call (fact 1) is 
substituted into the expression to produce the final expression (* 4 (* 3 (* 2 1))). With 
this substitution technique consideration never returns to previous lines because the final 
expression contains all necessary state.  

Figure 50 shows my diagram of this technique, which unlike the diagram of simulating 
execution in Figure 47 does not include an arrow indicating the flow of control returning to the 
calling recursive function. Each rectangle still includes a function call, but each rectangle also 
includes all pending calculations. In the subsequent line, the recursive call from the previous 
line is replaced with the equivalent expanded recursive relationship. Instead of representing 
the flow of control, each downward arrow signifies a substitution in which the recursive call is 
expanded and substituted in to the expression. 
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Figure 50. Schematization of the Accumulating Pending Calculations substitution technique 

The accumulating pending calculations technique does not involve retracing through the 
previous recursive calls like the substitution technique of simulating execution because all 
pending calculations are accumulated in the final expression. 

Example 
In the next case, the participant (participant identifier: Purple_Scheme) copied the full 

expression each time that he substituted in an expanded expression generated by a recursive 
call. For example, between the first and second line he appeared to substitute “(* 4 
(WhatIsIt 4 2))” in for the expression “(WhatIsIt 4 3).” He was not explicit about this 
process of substitution, but he arrived at the correct answer and I infer from the representation 
in Figure 51 that he substituted in the expanded expression from each recursive call.  

 

Figure 51. Written work on the WhatIsIt question by a participant (participant identifier: Purple_Scheme) 

Like the simulating execution representation shown in Figure 48, he did not write the 
initial call of “(WhatIsIt 4 4).” In the final line in Figure 51, he wrote the number 4, which 
he said (WhatIsIt 4 1) will “return.” Writing only 4 on the last line instead of the full set of 
pending calculations, (* 4 (* 4 (* 4 4 ) ) ) is a departure from this technique. Despite 
these subtle departures, this was the most legible and most easily interpreted use of this 
technique.  
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Substitution Technique: Memoization 

Description 
The third abstraction technique relies on calculating and storing the values of particular 

functions calls before they would be executed by an initial function call. This is similar to the 
optimization of storing the result of previously calculated recursive calls for the purpose of 
avoiding redundant function calls. This optimization is referred to as memoization in computer 
science and because of the similarity to this optimization I refer to this substitution technique 
as memoization.  

Although the technique relies on previously calculated values, this substitution 
technique can be used to calculate the value for an arbitrary function call. To do this you begin 
by calculating the value of the recursive function for an input that does not require any 
recursive calls. In the case of the fact function, shown in Figure 45, this would be evaluating 
the fact function with an x value of 1. A call to fact with an x value of 1 results in evaluating 
the true case of the “if” statement and returns the value 1. Now we know that (fact 1) 
returns 1. Next, you evaluate the function call of fact with an x value of 2 or (fact 2). This 
calculation results in multiplying the x value, 2, by (fact 1). We know that (fact 1) returns 1 
and can substitute in that value for (fact 1). It would not be an example of the substitution 
technique of memoization if an individual instead traced the function again for the x value of 1. 
Now we know that (fact 2) returns 2 and this resulting value from (fact 2) can be used 
when evaluating the fact function for the value 3. This pattern can be continued to identify 
the result of an arbitrary recursive call.  

This process can be seen as starting at the base case and working toward the desired 
recursive call. Figure 52 shows a schematization of this substitution technique. For consistency 
with my diagrams of the other substitution techniques, I have shown the base case at the 
bottom of this diagram, but this diagram is not representative of the diagrams I would expect 
individuals to generate. In this substitution technique, the individuals’ consideration of the 
function begins with the base case. If this was written at the top of the individuals’ 
representation, it would generate a diagram that is an inverted version of the one shown.  

In Figure 52 the bottom rectangle is a statement of the output of the function at the 
base case. For an instance of the mult function this would be “(mult 1 5) = 5.” All other 
rectangles include an expansion of the recursive relationship, such as “(mult 2 5) = (+ 5 
(mult 1 5)).” The arrows show the process of substituting in a previously calculated value 
such as “(mult 1 5) = 5” into the expression above. After this substitution, the full contents 
of the rectangle would be “(mult 2 5) = (+ 5 (mult 1 5)) = (+ 5 5) = 10.” Again, 
the arrows do not show the flow of control, but they show the steps of substitution of 
previously calculated values such as “(mult 1 5) = 5” or “(mult 2 5) = 10” into a 
recursive call that is farther from the base case. 
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Figure 52. Schematization of the memoization substitution technique 

Example 
Emily, who was quoted as connecting her technique to algebraic substitution, used the 

substitution technique of memoization on the WhatIsIt problem. I will narrate a single step in 
her use of the strategy.  

Emily was reasoning about the expression she had written that is shown in Figure 53. 
She had already calculated the result of (WhatIsIt 4 1) to be 4. In the following transcript, 
Emily was able to articulate how you could use the result from (WhatIsIt 4 1) when 
calculating (WhatIsIt 4 2). “I’m thinking that because we found that it was a 4 here, that it 
would be 4 times 4. And that would be 16.” She then paused and said “But I think I’m over 
simplifying things.” I asked her to clarify and she said: 

“Um because like when it was 4 and 1  like okay, so that was straight forward, but for 
when it was 4 and 2, what I was doing was like okay, If you have, when you start here. It 
becomes 4 and 2 minus 1, so then it’s 1. So then uh oh well so we know what that is, and 
that was [4], so then you take it times 4.”  

 
Figure 53. Previously generated tracing of (WhatIsIt 4 2) 

A key element in Emily’s explanation of this process is her statement “we know what 
this is.” This is the central idea in the substitution technique of memoization. Her statement 
“that was 4” stands in place of where she otherwise would have needed to explicitly trace the 
value of (WhatIsIt 4 1). Emily proceeded to use the same technique to determine the 
return value of (WhatIsIt 4 4). 

Substitution Technique: Solving it by hand 

Description 

In the substitution technique of solving it by hand the individual predicts the output of 
the first recursive call made in the body of the initial call to the function. I define “predicting the 
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output of the first recursive call” as using a method that is independent of the recursive 
function to predict the output of the function. I refer to this substitution technique as solving it 
by hand because the output of the first recursive call is determined “by hand” and not by using 
the recursive function.  

If we were executing the correct version of the function mult with the arguments 5 and 
3, the first recursive call made would be (mult 4 3). This substitution technique involves 
predicting the output of (mult 4 3). The function mult is supposed to multiply its 
arguments. Therefore solving it by hand is trivial and (mult 4 3) is expected to output the 
value 12, 4x3. This expected output can be substituted into the expression in place of the first 
recursive call.  

This requires that the individual is able to predict the output of the function and 
therefore requires that the specification of the function is well understood. The WhatIsIt 
function, for which the behavior of the function is not provided, is not a candidate for the use 
of this technique.  

This technique does not require tracing each recursive call. The initial function call is 
traced, but then the next recursive call is replaced with a value calculated by hand. This single 
step of execution is shown in Figure 54, where each rectangle represents a recursive call. The 
right arrow shows the flow of control that causes the first expansion of the recursive call, but 
the flow of control to subsequent recursive calls is not shown or considered by the individual 
using this technique. In the second rectangle, the value that is calculated by hand is substituted 
into the recursive expression. The left arrow shows the resulting value from this expression 
returned as the output of the function.  

 

Figure 54. Schematization of the solving it by hand substitution technique 

This is a normative technique to evaluate the correctness of a recursive call, which is parallel to 
checking one case of an inductive chain. However, this technique does not guarantee that the 
recursive function is correct; the base case also needs to be correct and the recursive 
relationship needs to be consistent throughout the execution of the recursive function.  

Example 
 In the following examples, the participant Tim (participant identifier: Orange_TL) used 
this technique twice when reasoning about the recursive function mult as specified by two 
answer options. Tim had already used the substitution technique of simulating execution to 
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trace the function, but because of a systematic error in his tracing of answer option C, he could 
not distinguish the behavior of the functions specified by answer options C and D. The recursive 
relationship for these answer options are shown in Equation 9 and Equation 10 respectively. 
Answer option D is the correct answer option and option C is incorrect, but he believed them to 
both be correct. In the transcript below, Tim attempted a new technique, which I classify as 
solving it by hand to identify whether answer option C or D was correct. Unlike the presentation 
of the other substitution techniques described in this chapter I describe two hypothesized uses 
of this technique and discuss some of the uncertainty involved in classifying these hypothesized 
uses of the technique. 

(        )  (    (     (     )  )) 

Equation 9. Correct recurrence relationship specified by answer option D. 

 Tim created the representation shown in Figure 55 and did so without tracing individual 
recursive calls. There are a number of aspects of his representation that are not explicit. He 
created this representation shown in Figure 55 during the following transcript. 

“Well if we look at it this way. This one’s going to be y plus (wrote “y+”), and assuming 
this works (pointing to answer option D) it’s going to be x minus 1 times y. So it’ll be like 
4 y (wrote “4 y”) so that’ll be 5 y (wrote “= 5 y” on the second line), if we start with 5 y 
(wrote “5 y” on the first line). So like that should definitely work.” 

 

Figure 55 Inscriptions created by Tim to trace through answer option D 

This technique can be used to evaluate the correctness of the recursive call as I 
described, but it is uncertain whether or not Tim used this technique. I interpret Tim’s 
statements and inscriptions as indicating that he used the technique that I refer to as solving it 
by hand, but continue my narration of this case by discussing some of the assumptions in my 
interpretation of his solution.  

Tim used the inscription of “5 y” in both the first and second lines of Figure 55 and I 
interpret the meaning of them differently. In the first line I interpret “5 y” as representing the 
initial function call to mult with the arguments 5 and y, which is typically written as (mult 5 
y). The “5 y” from the second line I interpret as representing the desired output of the 
function call (mult 5 y).  It is ambiguous if his inscription of “4 y” should be interpreted as 
mathematical notation for 4 times y or as shorthand for the recursive call (mult 4 y). 
However, regardless of the interpretation of this inscription his statement “assuming this 
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works” is consistent with the use of this technique and he did not show any indication of tracing 
a recursive call or referring to a previously calculated value.  

At this point he became “pretty confident” that answer option D was correct. He said: 
“So I’m thinking it is more likely to be this one, and I’m just not thinking this one (answer option 
C) through. I think it’s D. I think it’s D. I’m pretty confident.” Despite his confidence, he was still 
unable to use simulating execution to show that option C does not also produce the correct 
result. After two additional attempts to trace answer option C, I encouraged him to try to see if 
answer option C was correct using the technique he used when creating Figure 55. The 
recurrence relationship from answer option C is shown in Equation 10. Using this method he 
convinced himself that answer option C is incorrect. 

(        )  (     (     ) (     )) 

Equation 10. Incorrect recurrence relationship specified by answer option C. 

 

Figure 56 Inscriptions created by Tim to trace through answer option C 

“Alright, well that reasoning is – that in theory multiply works. And does what we want. So if 
we start with 4 and um. 4 y (wrote 4y). When you run this, it’s going to give us multiply 
(wrote “mult“) three times y plus y (wrote “(3 y + y)”). And 3 times y plus y// 3 times 2 y is 6 y 
(wrote “6 y” and drew a box around it) So that’s not right. And that would convince me I’m 
wrong (referring to his conclusion that answer option C was correct).” 

Like the first example where he proceeded by “assuming this works,” here he explained 
his reasoning as “that in theory multiply works and does what you want.” Using answer option 
C, Tim again traced a single execution of the recursive call specified by answer option C and 
substituted in the expected output of the mult function. His inscriptions during this are shown 
in Figure 56. Again he appeared to represent the initial function call of (mult 4 y) as “4 y.” 
He was explicit about the recursive call to mult that would result. Applying the recurrence 
relationship from answer option C shown in Equation 10 and wrote “mult (3 y+y).”  

Discussion 

Techniques Beyond Substitution 
The techniques identified in this chapter are not intended to be comprehensive of all 

possible techniques for reasoning about recursive functions. One technique, instead of using 
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substitution, involves seeing that the algorithm described by a multiline summary of a function 
is the same as the algorithm known by the individual to perform the same calculation. This 
mapping allows an individual to conclude that the recursive function works as expected, but 
does not involve tracing specific values. This technique was used by only a single participant 
among 25 participants on the mult problem shown in Figure 44, which required the 
participants identify a recursive function that used repeated addition to multiply two numbers.  

Example 
When reasoning about the mult problem, the participant named Peter (participant 

identifier: Purple_TR) describes “x*y” as “really saying x plus x plus x, y times.” He observed 
that answer option D “looks like it might do that” and came to the correct conclusion that 
answer option D was the correct answer without ever tracing the function. During the segment 
documented in the following transcript, Peter created the representation shown in Figure 576.  

“Umm, I can’t really explain it, but this seems reasonable as an answer. (Interviewer: OK, 
Why?) Umm, because I kind of think of multiplication as if we have x times y (wrote 
“x*y” shown in Figure 57) that’s really saying x+x+x, y times (completed inscriptions in 
Figure 57).  So, and this looks like. Looks like it might do that, but I’m not sure (pause) So 
statement 1, umm. I guess that would imply this (points to answer option D), so I guess 
I’ll try D out first.” 

 

Figure 57. Peter's notes when explaining why answer option D was correct 

 After making the conclusion that D “seems reasonable as an answer” Peter used simulating 
execution to trace through each of the answer options with sample input. Although Peter did not 
use the technique to determine his final answer, this is a valid technique with which to reason 
about the function and does not involve substitution. 

                                                        
6 The right most annotation may be read as “5 times,” but based upon Peter’s statements interpret it as “y times,” 

with the cross of the “t” extending above the “y.” 
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Pedagogical Implications 
The substitution techniques of simulating execution, accumulating pending calculations, 

and memoization all trace each recursive call, but do so in different orders.  I hypothesize that 
the differences between these three techniques may provide the opportunity to scaffold 
students’ understanding of how recursive functions are executed by computers and may 
provide the opportunity to highlight relevant features of the execution of recursive functions. 
For example, these substitution techniques and the corresponding representations for tracking 
state could be taught to students, which may support students in more accurately tracking 
state.  

The substitution technique of memoization may be the most accessible to a novice 
student, because the student only needs to consider a single execution of the recursive function 
at a time. However, even without reasoning about an uninterrupted sequence of recursive calls, 
the student still has the opportunity to reason about the base case as producing a known value 
and the recursive expression producing a value that depends upon another execution of the 
recursive function.   

The substitution technique of accumulating pending calculations also does not require 
reasoning about the execution of multiple recursive calls at a time, but provides the added 
complexity of considering each recursive call in an uninterrupted sequence. This uninterrupted 
sequence of recursive calls is identical to the sequence of recursive calls executed by a 
computer. Transitioning from the use of memoization to the use of accumulating pending 
calculations could potentially focus students on this sequence of recursive calls.  

The substitution technique of simulating execution requires a more complete model of 
how a computer simulates execution of recursive functions. Connecting this technique to the 
substitution techniques of accumulating pending calculations may help students reason about 
the fact that the flow of control returns to the previous recursive calls. This feature of how a 
computer executes recursive calls is important for reasoning about non-linear recursion and 
recursion in an imperative programming environment, which both require returning to the 
previous recursive call to execute any remaining commands.  

All of the substitution techniques build upon the algebraic technique of substitution. 
Legitimizing the use of this technique in the ways described above may be important to help 
students understand what of their content knowledge from math is applicable to solving 
computer science problems. The substitution technique of solving it by hand builds upon 
students’ experience reasoning about algorithms, which may be another connection to 
students’ out-of-domain knowledge. In the following section I describe how students’ lack of 
knowledge about the legitimacy of using algebraic substitution in the ways described above 
may create a barrier to the transfer of this relevant skill. I hypothesize that this may be a more 
general pattern of difficulty when students are learning to apply elements of prior knowledge 
without explicit instruction legitimizing this transfer.  
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Barriers to Transfer 
In this chapter, I provided an example of how the participant named Emily used the 

substitution technique of memoization to solve the WhatIsIt problem shown in Figure 43. 
This example included statements from Emily discussing her concern about the legitimacy of 
this technique.  

Emily was particularly articulate about her thought process and additional quotations 
regarding her lack of confidence with this technique are used to introduce the hypothesis that 
individuals’ beliefs about the relevance of their prior knowledge from math or other domains 
may reduce the instances of productive transfer to the programming context.  

Despite the fluidity of her use of memoization and the fact that at one point she 
described the process as “obvious,” she continually expressed hesitation about the legitimacy 
of the technique. For example, she expressed concern that she might be “oversimplifying 
things” and that she is “not using the recursive calls properly.” 

“That seems wrong to me. I feel like you’re not taking it. Because it’s supposed to go 
back to the case before. I think what I was just doing is thinking of it as math again, like 
you just, like when you solve two equations like if you do like, a system of equations, you 
just like take one equation and plug it in to the other one. I think that’s what I’m doing 
here and I don’t think I can just simply do that. I’m taking it like oh this is its own 
equation (pointing to WhatIsIt 4 2) so since, since it’s like equivalent, ‘oh it’s 16’ (with 
emphasis) I don’t know if that makes sense but, but if it’s it’s own variable (points to 
what is it 4 2) like if you found out it was 16 before, oh you can just plug that in, so then 
it’s like 16 times 4, but then, I’m not sure if it’s how I can take, if it can still go back to the 
base case.” 

In this case the technique Emily was using worked as intended. This is because the 
function she was tracing was written using a functional-programming paradigm, in which 
functions are guaranteed to produce the same output for a particular input and function calls 
have no side effects beyond producing an output.  

Emily’s concern about the legitimacy of this math-like technique is the foundation of my 
current hypothesis that individuals’ beliefs about the relevance of their prior knowledge from 
math or other domains may reduce the instances of productive transfer to the programming 
context. 
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CONCLUSION 
Computer science education research has documented the pattern that many students 

are not successful learning to program (e.g., McCracken et al., 2001). However, it remains an 
open question what non-programming experiences could prepare students for success learning 
to program (Simon et al., 2006). In this dissertation I investigate the question of what 
experiences students bring to the computer science classroom, how they can contribute to 
success, and how computer science pedagogy can take advantage of them. I hypothesize that 
students can make productive use of their out-of-domain knowledge and that this use may 
explain the range of novice students’ success learning to program.  

A common (Robins, 2010) alternative assumption among computer science educators 
and computer science education researchers is that innate aptitude for computer programming 
explains the range of students’ success (Dehnadi, 2006; Lister et al., 2004; Reges, 2008; Simon 
et al., 2006). According to the work of Dweck (2007) and Steele (1997), when this assumption 
underlies pedagogy, student learning and attitudes suffer. This unproductive community 
assumption serves as motivation for this work, which identifies specific out-of-domain 
knowledge that may account for participants’ successful reasoning. These examples of out-of-
domain knowledge that support students’ reasoning about computer science can contribute to 
dispelling the unproductive assumption that innate aptitude for computer programming 
explains the range of students’ success.  

To investigate what out-of-domain knowledge supports students’ success, I conducted a 
detailed analysis of students’ reasoning on computer programming questions that were 
identified by previous research as highly correlated with success on the AP CS exam (Reges, 
2008). The participants were college students enrolled in one of three introductory 
programming courses at the University of California, Berkeley. As such, these students had 
been successful in their previous academic pursuits and could be expected to have a variety of 
out-of-domain knowledge, some of which may be relevant to reasoning about computer 
programming problems.  

This dissertation is largely exploratory because little is known of how novice 
programmers build upon their out-of-domain knowledge. Unlike much of educational research 
that focuses only on students’ persistent difficulties, in this dissertation I document 
competencies of novice programmers. These competencies are one set of results from the 
dissertation.  

These competencies also motivated my development of hypotheses regarding the 
sources of these competencies, which was primarily theoretical work. To develop these 
hypotheses I applied learning theories many of which had not previously been applied to the 
domain of computer science.  

These hypotheses varied in their level of speculation and additional research provides 
the opportunity for validation, refinement, or rejection. Below I provide a summary of the 
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primary contributions from each analytic chapter and discuss the level of uncertainty in each 
chapter. I compare the uncertainties from each chapter for the purpose of calibration and while 
all analyses include uncertainty, I identify instances of more and less uncertainty within my 
analyses.  

The coordination class of state 

Summary 
The first analysis chapter analyzes one student’s moment-to-moment reasoning. The 

case shows an example where a student explicitly built upon everyday knowledge when 
constructing a scientifically normative explanation in the domain of computer science. In this 
case study I analyze the computer-science-specific and everyday knowledge of “and” that the 
participant used across four episodes. I use coordination class constructs to describe the ways 
in which the participant integrated her everyday knowledge of “and” into her reasoning about 
the computer science version of “and”. This chapter contributes the first application of 
coordination class theory outside of physics and mathematics. 

This student, Emily, reasoned about the behavior of the conditional “and,” which from a 
computer science perspective requires reasoning about the input and output states of the 
conditional “and.” I propose that state is a coordination class. To justify this claim I provide a 
description of the extent to which the concept of state meets the requirements for a 
coordination class.  

Level of Uncertainty in Analysis 
In episode two Emily attributed her knowledge as relevant for either “this world” or 

“the computer.” Her statements about the nature of her knowledge provide me with a high 
level of confidence for the classification of some of her knowledge as out-of-domain 
knowledge. However, it remains an open question if this out-of-domain knowledge was 
primarily linguistic or had another source. Additional specificity regarding the nature of this 
knowledge would be beneficial to the goal of building upon students’ out-of-domain 
knowledge.  

The generalizability of Megan’s success integrating her everyday knowledge of “and” in 
the computer science context is unknown and additional research could target these open 
questions and focus more narrowly on the hypothesized productivity of linguistic knowledge for 
reasoning about Boolean expressions in computer science.  

Partial Descriptions of State Change 

Summary 
The second analysis chapter develops constructs to describe a type of knowledge that 

participants were believed to be using when reasoning about program state, which I refer to as 
partial descriptions of state change. This chapter emphasizes the nature of this knowledge and 
deemphasizes the dynamics of its use, which was the focus in the previous analysis chapter.  
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In my future research the constructs that I develop in this chapter can be used for 
tracking the dynamics of participants’ reasoning about state and I hypothesize that these partial 
descriptions of state change could serve as a concrete target for instruction.   

Researchers have developed the hypothesis that the ability to produce a summary of 
code develops after the ability to trace code (Venables, Tan, & Lister, 2009). I observed the 
opposite pattern; participants generated summaries of code even when they were unsuccessful 
tracing the same code. This demonstrates that individuals’ competence with tracing and 
summarizing code is context-specific; there may be no universal pattern of how these 
competencies develop and are used across contexts.  

Level of Uncertainty in Analysis 
The second analysis chapter sought to describe a particular competence rather than 

specify a source of knowledge. Labeling and describing a particular competence to develop a 
construct is also subjective, but the methods of evaluation are not the same as evaluating a 
potentially subjective analysis. Addition analysis, which applies these constructs, is necessary to 
determine the usefulness of understanding students’ reasoning about computer program state.  

Partial descriptions of state change may also be helpful for students to generate as 
preparation for tracing code as a mechanism for checking their individual steps. Independent of 
the empirical usefulness of these constructs, these constructs may be productive for 
communicating expectations to students’ regarding desired summaries of code.  

Intuitive knowledge about base cases and infinite loops 

Summary 
In the third analysis chapter I developed and present two hypotheses about what out-

of-domain knowledge may have supported students’ correct reasoning about infinite loops and 
base cases despite many of these students experiencing difficulty tracing the same function. I 
present a hypothesis that individuals’ understanding of iterative processes may support their 
reasoning about infinite loops and that this knowledge of iterative processes could have the 
same properties as the type of intuitive knowledge that diSessa (1993) referred to as p-prims. I 
propose a new p-prim that includes this type of knowledge of iterative processes and refer to 
this as the repeating p-prim.  

In the third analysis chapter I also present a second hypothesis that students’ embodied 
experience may contribute to their reasoning about base cases in recursive functions. I 
document that participants used physical language when describing base cases and I developed 
two more specific hypotheses about the nature of this embodied knowledge. First, from 
examples of participants’ physical language, I developed two metaphors that participants may 
have used in their descriptions of the base case in a recursive function. Second, participants’ 
physical language also inspired my analysis that explains how the blocking p-prim (diSessa, 
1993) can provide correct intuition about base cases in recursive functions. 
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In developing the hypotheses presented in analysis chapter three I connect both p-prim 
theory and Metaphor Theory (Lakoff & Núñez, 2000) with computer science education. In this 
application of p-prim theory, I propose a clarification to p-prim theory, which is that although p-
prims provide the expectation that a phenomenon does not need an explanation, if it is brought 
to the individual’s attention he or she may still be able to reason articulately about the need for 
an explanation.  

Level of Uncertainty in Analysis 
The third analysis chapter was the most speculative. I applied both p-prim theory 

(diSessa, 1993) and Metaphor Theory (Lakoff & Núñez, 2000), which have not previously been 
applied to computer science. This analysis was a first step toward identifying the source and 
content of students’ relevant out-of-domain knowledge and the hypotheses that students built 
upon the repeating and blocking p-prims may be validated, refined, or rejected by additional 
research.  

Substitution techniques 

Summary 
The final analysis chapter documents participants’ application of algebraic substitution 

techniques to the task of tracking program state in recursive functions, which is an additional 
example of how participants used out-of-domain knowledge when solving computer science 
problems. The content of this chapter is intended to be valuable to computer science educators 
and it describes what appear to be four distinct instantiations of algebraic substitution to track 
program state. The fourth analysis chapter proposes a progression of substitution techniques to 
scaffold students to reason about the execution order of recursive functions. The chapter 
functions as a first step toward a taxonomy of how algebraic substitution techniques can be 
applied to tracing the state of recursive functions.  

Level of Uncertainty in Analysis 
The fourth analysis chapter was the most specific in identifying the likely source of 

knowledge for tracing program state as from experience with algebraic substitution. In the 
analysis I claim that the techniques can be seen as applications of algebraic substitution. Emily 
identified this connection, but I do not make the claim that other students made or would make 
this connection. If students generally rejected this connection between algebraic substitution 
and recursion, the connection would be unlikely to be pedagogically valuable.  

Summary of Contributions 
This dissertation applied learning theories that had not previously been applied to 

computer science education. Through this application I extend the learning theories to the 
domain of computer science, propose refinements to the theories, and provide insights into 
participants’ reasoning about particular computer science topics. While open questions remain, 
this dissertation provides first steps toward identifying out-of-domain knowledge that students 
can apply to solving computer science problems.  
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